Collection February 26, 2013

Post puzzles for others to solve here.

Collection February 26, 2013

Postby ArkieTech » Tue Feb 26, 2013 3:47 am

Code: Select all
 *-----------*
 |...|4.2|8.1|
 |4..|..5|.6.|
 |..3|...|...|
 |---+---+---|
 |.16|..4|...|
 |...|7.3|...|
 |...|2..|35.|
 |---+---+---|
 |...|...|4..|
 |.2.|1..|..9|
 |6.7|5.9|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Collection February 26, 2013

Postby Leren » Tue Feb 26, 2013 4:59 am

Code: Select all
*-----------------------------------------------------------------------*
| 579    5679   59      | 4      3679   2       | 8      39     1       |
| 4      789    12      | 389    13789  5       | 279    6      237     |
| 12     6789   3       | 689    16789  1678    | 2579   249    2457    |
|-----------------------+-----------------------+-----------------------|
| 3      1      6       | 89     5      4       | 279    289    278     |
| 2589   459    24589   | 7      689    3       | 169    1489   468     |
| 789    479    489     | 2      1689   168     | 3      5      468     |
|-----------------------+-----------------------+-----------------------|
| 1589   359    1589    | 368    23678  678     | 4      2378   56      |
|a58     2     a458     | 1      34678 a678     |a56    a378    9       |
| 6     b34     7       | 5      2348   9       | 12     128-3  28-3    |
*-----------------------------------------------------------------------*


als xz-rule: (3=4) r8c13678 - (4=3) r9c2 => r9c89 <> 3; stte

Leren
Leren
 
Posts: 5128
Joined: 03 June 2012

Re: Collection February 26, 2013

Postby pjb » Tue Feb 26, 2013 5:16 am

Much the same, but ALS-free:

(3=4) r9c2 - r8c3 = (4-3) r8c5 = (3) r8c8: => r9c89 <> 3

Phil
pjb
2014 Supporter
 
Posts: 2677
Joined: 11 September 2011
Location: Sydney, Australia

Re: Collection February 26, 2013

Postby tlanglet » Tue Feb 26, 2013 3:49 pm

I found some interesting moves but none resulted in a clean progression of steps except by using the logic of the prior posts.

Ted
tlanglet
2010 Supporter
 
Posts: 538
Joined: 29 May 2010

Re: Collection February 26, 2013

Postby daj95376 » Tue Feb 26, 2013 4:14 pm

tlanglet wrote:I found some interesting moves but none resulted in a clean progression of steps except by using the logic of the prior posts.

All of my solver's ALS-free, single-step, chain solutions used <3> and <4> only -- including Phil's M-Wing. I couldn't even get away from them in the ALS-type solutions. (The first two solutions are different perspectives of the same outcome.)

Code: Select all
 +-----------------------------------------------------------------------+
 |  579    5679   59     |  4      3679   2      |  8      39     1      |
 |  4      789    12     |  389    13789  5      |  279    6      237    |
 |  12     6789   3      |  689    16789  1678   |  2579   249    2457   |
 |-----------------------+-----------------------+-----------------------|
 |  3      1      6      |  89     5      4      |  279    289    278    |
 |  2589   459    24589  |  7      689    3      |  169    1489   468    |
 |  789    479    489    |  2      1689   168    |  3      5      468    |
 |-----------------------+-----------------------+-----------------------|
 |  1589   359    1589   |  368    23678  678    |  4      2378   56     |
 |  58     2      458    |  1      34678  678    |  56     378    9      |
 |  6      34     7      |  5      2348   9      |  12     1238   238    |
 +-----------------------------------------------------------------------+
 # 124 eliminations remain

 ANT: (4)r9c5 = (4-3)r8c5 = r8c8 - (3=128)r9c789              =>  r9c5<>28
 AHP: (4)r9c5 = (4-3)r8c5 = r8c8 - (3    )r9c 89 = (34)r9c25  =>  r9c5<>28

 ANQ:

 (5678=3)r8c1678 - r1c8 = r2c9 - r2c4 = r7c4 - (3=1589)r7c123,r8c1  =>  r8c3<>58, r7c8<>3
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Collection February 26, 2013

Postby Marty R. » Tue Feb 26, 2013 5:02 pm

pjb wrote:Much the same, but ALS-free:

(3=4) r9c2 - r8c3 = (4-3) r8c5 = (3) r8c8: => r9c89 <> 3

Phil


Same, but I'm adding the technique name, M-Wing.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA


Return to Puzzles