Collection December 24, 2012

Post puzzles for others to solve here.

Collection December 24, 2012

Postby ArkieTech » Mon Dec 24, 2012 7:45 am

Code: Select all
 *-----------*
 |...|..8|...|
 |..9|...|...|
 |52.|.4.|3..|
 |---+---+---|
 |..5|.6.|..7|
 |976|5.2|1..|
 |1..|...|..9|
 |---+---+---|
 |..7|..5|...|
 |2..|.93|..4|
 |31.|...|6..|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Collection December 24, 2012

Postby Leren » Mon Dec 24, 2012 8:43 am

Code: Select all
*--------------------------------------------------------------------------------*
|c47     b46      3        |c127    c257     8        | 9      c257     126      |
| 78      8-6     9        | 1237    2357   a16       | 4       257     126      |
| 5       2       1        | 79      4       69       | 3       78      68       |
|--------------------------+--------------------------+--------------------------|
| 48      348     5        | 19      6       19       | 28      238     7        |
| 9       7       6        | 5       38      2        | 1       4       38       |
| 1       38      2        | 378     378     4        | 5       6       9        |
|--------------------------+--------------------------+--------------------------|
| 6       9       7        | 4       1       5        | 28      238     238      |
| 2       5       8        | 6       9       3        | 7       1       4        |
| 3       1       4        | 28      28      7        | 6       9       5        |
*--------------------------------------------------------------------------------*


ANS XY Wing: (6=1) r2c6 -1r1c4 = 4r1c1 [ANS(12457)r1c1458] - (4=6) r1c2 => r2c2 <6> ; stte

Leren
Last edited by Leren on Tue Dec 25, 2012 11:09 am, edited 1 time in total.
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: Collection December 24, 2012

Postby Leren » Mon Dec 24, 2012 10:16 am

Code: Select all
*--------------------------------------------------------------------------------*
| 47     d46      3        |b127     257     8        | 9       257    c126      |
| 78      8-6     9        | 1237    2357   a16       | 4       257     126      |
| 5       2       1        | 79      4       69       | 3       78      68       |
|--------------------------+--------------------------+--------------------------|
| 48      348     5        | 19      6       19       | 28      238     7        |
| 9       7       6        | 5       38      2        | 1       4       38       |
| 1       38      2        | 378     378     4        | 5       6       9        |
|--------------------------+--------------------------+--------------------------|
| 6       9       7        | 4       1       5        | 28      238     238      |
| 2       5       8        | 6       9       3        | 7       1       4        |
| 3       1       4        | 28      28      7        | 6       9       5        |
*--------------------------------------------------------------------------------*


M Wing: (6=1) r1c6 - r1c4 = (1-6) r1c9 = 6r1c2 => r2c2 <6>; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: Collection December 24, 2012

Postby pjb » Mon Dec 24, 2012 10:25 am

How about:

(6)r1c2 = (6-1)r1c9 = (1)r1c4 - (1-6)r2c6: => r2c2 <> 6; stte

Season's Greetings, Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: Collection December 24, 2012

Postby ArkieTech » Mon Dec 24, 2012 11:27 am

Code: Select all
 *-----------------------------------------------------------*
 | 47   a46    3     | 127   257   8     | 9     257  e12-6  |
 | 78   b68    9     | 1237  2357 c16    | 4     257  d126   |
 | 5     2     1     | 79    4     69    | 3     78    68    |
 |-------------------+-------------------+-------------------|
 | 48    348   5     | 19    6     19    | 28    238   7     |
 | 9     7     6     | 5     38    2     | 1     4     38    |
 | 1     38    2     | 378   378   4     | 5     6     9     |
 |-------------------+-------------------+-------------------|
 | 6     9     7     | 4     1     5     | 28    238   238   |
 | 2     5     8     | 6     9     3     | 7     1     4     |
 | 3     1     4     | 28    28    7     | 6     9     5     |
 *-----------------------------------------------------------*
s-wing
6r1c2=r2c2-(6=1)r2c6-r2c9=1r1c9 => -6r1c9; stte
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: Collection December 24, 2012

Postby storm_norm22 » Mon Dec 24, 2012 1:58 pm

found some other paths, but that m-wing does the trick
Norm
storm_norm22
 
Posts: 89
Joined: 21 November 2012
Location: east coast, USA

Re: Collection December 24, 2012

Postby daj95376 » Mon Dec 24, 2012 5:36 pm

storm_norm22 wrote:found some other paths, but that m-wing does the trick

Is this one of the other paths you found?

Code: Select all
 after basics
 +--------------------------------------------------------------+
 |  47   c46    3     |  127   257   8     |  9     257  d126   |
 | h78   g68    9     |  1237  2357 f16    |  4     257  e126   |
 |  5     2     1     |  79    4     69    |  3     78    68    |
 |--------------------+--------------------+--------------------|
 | i48   b348   5     |  19    6     19    | j28   a238j  7     |
 |  9     7     6     |  5     38    2     |  1     4     38    |
 |  1     38    2     |  378   378   4     |  5     6     9     |
 |--------------------+--------------------+--------------------|
 |  6     9     7     |  4     1     5     |  28    238   238   |
 |  2     5     8     |  6     9     3     |  7     1     4     |
 |  3     1     4     |  28    28    7     |  6     9     5     |
 +--------------------------------------------------------------+
 # 49 eliminations remain

 (3)r4c8 = (3-4)r4c2 = (4-6)r1c2 = (6-1)r1c9 = r2c9 -
 (1=6)r2c6 - (6=8)r2c2 - r2c1 = r4c1 - (28=3)r4c78  =>  r4c8<>28
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Collection December 24, 2012

Postby Marty R. » Mon Dec 24, 2012 10:47 pm

Code: Select all
+----------+--------------+------------+
| 47 46  3 | 127  257  8  | 9  257 126 |
| 78 68  9 | 1237 2357 16 | 4  257 126 |
| 5  2   1 | 79   4    69 | 3  78  68  |
+----------+--------------+------------+
| 48 348 5 | 19   6    19 | 28 238 7   |
| 9  7   6 | 5    38   2  | 1  4   38  |
| 1  38  2 | 378  378  4  | 5  6   9   |
+----------+--------------+------------+
| 6  9   7 | 4    1    5  | 28 238 238 |
| 2  5   8 | 6    9    3  | 7  1   4   |
| 3  1   4 | 28   28   7  | 6  9   5   |
+----------+--------------+------------+

Play this puzzle online at the Daily Sudoku site

I tried this chain and, as is often the case, don't know if the notation is valid.

(8=4)r4c1-(4=7)r1c1-(12457=6)r1c45892-(6=8)r2c2=>r2c1<>8

A longer version:

(8=4)r4c1-(4=7)r1c1-(257=1)r1c584-(1=6)r2c6-(6=8)r2c2=>r2c1<>8
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Collection December 24, 2012

Postby DonM » Tue Dec 25, 2012 1:27 am

Marty R. wrote:
Code: Select all
+----------+--------------+------------+
| 47 46  3 | 127  257  8  | 9  257 126 |
| 78 68  9 | 1237 2357 16 | 4  257 126 |
| 5  2   1 | 79   4    69 | 3  78  68  |
+----------+--------------+------------+
| 48 348 5 | 19   6    19 | 28 238 7   |
| 9  7   6 | 5    38   2  | 1  4   38  |
| 1  38  2 | 378  378  4  | 5  6   9   |
+----------+--------------+------------+
| 6  9   7 | 4    1    5  | 28 238 238 |
| 2  5   8 | 6    9    3  | 7  1   4   |
| 3  1   4 | 28   28   7  | 6  9   5   |
+----------+--------------+------------+


I tried this chain and, as is often the case, don't know if the notation is valid.

(8=4)r4c1-(4=7)r1c1-(12457=6)r1c45892-(6=8)r2c2=>r2c1<>8


When notating an ALS, it's best to have the notation reflect the actual left-to-right 'logic stream' in the chain:
Thus: (8=4)r4c1-(4=7)r1c1-(7=12456)r1c24589-(6=8)r2c2 etc.

The logic stream in the underlined portion as notated now reads:
(in r1c1) if not 4 then 7 -> not 7 in r1c24589 thus locking the remaining 12456 in r1c24589 resulting in: not 6 in r2c2 etc.

(I prefer using the label 'als' but left it out here so as to not confuse the issue.)
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: Collection December 24, 2012

Postby ronk » Tue Dec 25, 2012 3:20 am

Marty R. wrote:
Code: Select all
+----------+--------------+------------+
| 47 46  3 | 127  257  8  | 9  257 126 |
| 78 68  9 | 1237 2357 16 | 4  257 126 |
| 5  2   1 | 79   4    69 | 3  78  68  |
+----------+--------------+------------+
| 48 348 5 | 19   6    19 | 28 238 7   |
| 9  7   6 | 5    38   2  | 1  4   38  |
| 1  38  2 | 378  378  4  | 5  6   9   |
+----------+--------------+------------+
| 6  9   7 | 4    1    5  | 28 238 238 |
| 2  5   8 | 6    9    3  | 7  1   4   |
| 3  1   4 | 28   28   7  | 6  9   5   |
+----------+--------------+------------+

I tried this chain and, as is often the case, don't know if the notation is valid.

(8=4)r4c1-(4=7)r1c1-(12457=6)r1c45892-(6=8)r2c2=>r2c1<>8

The 6s in r1c9 and r2c2 do not see each other. Were r1c9<>2 done with a prior move, the puzzle would already be reduced to a cascade of singles.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Collection December 24, 2012

Postby Marty R. » Tue Dec 25, 2012 4:45 am

Thanks Don and Ron.

The 6s in r1c9 and r2c2 do not see each other. Were r1c9<>2 done with a prior move, the puzzle would already be reduced to a cascade of singles.


Ron, I don't understand. What's the significance of the two 6s not seeing each other?
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Collection December 24, 2012

Postby DonM » Tue Dec 25, 2012 5:12 am

Marty R. wrote:Thanks Don and Ron.

The 6s in r1c9 and r2c2 do not see each other. Were r1c9<>2 done with a prior move, the puzzle would already be reduced to a cascade of singles.


Ron, I don't understand. What's the significance of the two 6s not seeing each other?


I'll answer that since I feel remiss in not having checked the logic of the ALS before discussing the notation of it. Ron is right. The general rule is that when you are assuming that a given target digit downstream of the ALS would be 'not' if the locked set were to occur then all digits in that locked set that are the same as the target digit must 'see' that target digit.

The practical reason is that if you look at your ALS, there are 2 6s in what would be the resulting locked set, one at r1c2 and one at r1c9. Your chain assumes that the locked set that would occur if 'not 7' occurred would knock out the 6 in r2c2, but you don't know that because the locked set (until proven otherwise) could consist of a 4 in r1c2 and a 6 in r1c9. Only if both 6s in your ALS (at r1c2 and r1c9) were to 'see' the 6 in r2c2 could you be sure that it would be 'not 6' as your chain assumes.

Fwiw: this is one of the easiest mistakes to make in a longer ALS structure.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008


Return to Puzzles