- Code: Select all
+----------------------+---------------------------+----------------------+
| 123* 4 5 | 28 9 128 | 6 7 123* |
| 9 12* 6 | 37 5 37 | 4 12* 8 |
| 8 7 123* | 246 16 1246 | 123* 5 9 |
+----------------------+---------------------------+----------------------+
| 246 258 9 | 1 678 45678 | 28 3 247 |
| 146 158 178 | 345678 2 345678 | 189 169 147 |
| 1246 3 1278 | 4678 678 9 | 5 126 1247 |
+----------------------+---------------------------+----------------------+
| 123* 9 1238 | 2678 1678 12678 | 123* 4 5 |
| 5 128* 4 | 289 3 128 | 7 129* 6 |
| 7 6 123* | 259 4 125 | 1239 8 123* |
+----------------------+---------------------------+----------------------+
Degenerate Tridagon (123)b1379 (*), having two guardians: 8r8c2, 9r8c8
At least one is True. Whichever one is True, the other one can't be False.
Demo:
If r8c8=9 AND r8c2<>8, then the remaining pattern:
- Code: Select all
+----------------------+-----------------------+----------------------+
| 123* . . | . . . | . . 123* |
| . 12* . | . . . | . 12* . |
| . . 123* | . . . | 123* . . |
+----------------------+-----------------------+----------------------+
| . . . | . . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
+----------------------+-----------------------+----------------------+
| 123* . . | . . . | 123* . . |
| . 12* . | . . . | . +9 . |
| . . 123* | . . . | . . 123* |
+----------------------+-----------------------+----------------------+
... is an impossible pattern:
Let's a be the true candidate @r2c8. Then r2c2=b, r8c2=a
- Code: Select all
+----------------------+-----------------------+----------------------+
| a3* . . | . . . | . . b3* |
| . b* . | . . . | . a* . |
| . . a3* | . . . | b3* . . |
+----------------------+-----------------------+----------------------+
| . . . | . . . | . . . |
| . . . | . . . | . . . |
| . . . | . . . | . . . |
+----------------------+-----------------------+----------------------+
| b3* . . | . . . | ab3* . . |
| . a* . | . . . | . +9 . |
| . . b3* | . . . | . . ab3* |
+----------------------+-----------------------+----------------------+
The true digits @r1c9, r9c3 can't be the same. If so, r1c1=r3c3=a => -b3r9c9; r9c9=a
Similarly @r3c7, r7c1. If so, r7c7=a =>contradiction => +8r8c2
Same rationale for the assumption r8c2=8 AND r8c8<>9 (contradiction in b7)
Therefore, r8c2=8 and r8c8=9; ste