.
I don't know a lot of what you meant (I found only two jellyfish), but it also has a lot of g-candidates and g-whips, leading to a solution in gW9.
The puzzle is in T&E(1) and could therefore be solved by braids. However, SER 9.4 means it will be on the hard side of a solution with whips/braids (e.g. it has no solution in W14), so I preferred trying with g-whips.
Resolution state after Singles:
- Code: Select all
+----------------------+----------------------+----------------------+
! 123 123 9 ! 12345 8 7 ! 6 245 1245 !
! 5 4 1236 ! 12369 136 13 ! 19 8 7 !
! 12678 1268 1267 ! 124569 1456 145 ! 1459 2459 3 !
+----------------------+----------------------+----------------------+
! 123469 7 12346 ! 13458 1345 1345 ! 13459 34569 145689 !
! 1346 136 8 ! 1345 2 9 ! 7 3456 1456 !
! 1349 13 5 ! 1348 7 6 ! 2 349 1489 !
+----------------------+----------------------+----------------------+
! 13467 1356 13467 ! 13456 9 2 ! 8 3456 456 !
! 12346 9 12346 ! 13456 13456 8 ! 345 7 2456 !
! 23468 23568 2346 ! 7 3456 345 ! 3459 1 24569 !
+----------------------+----------------------+----------------------+
230 candidates, 1649 csp-links and 1649 links. Density = 6.26%
whip[1]: c8n2{r3 .} ==> r1c9 ≠ 2
234 g-candidates, 1359 csp-glinks and 792 non-csp glinks
z-chain[3]: c4n9{r3 r2} - r2n2{c4 c3} - r2n6{c3 .} ==> r3c4 ≠ 6
finned-jellyfish-in-rows: n4{r1 r6 r5 r7}{c8 c9 c4 c1} ==> r9c1 ≠ 4, r8c1 ≠ 4
biv-chain[4]: r2n2{c3 c4} - r2n9{c4 c7} - b9n9{r9c7 r9c9} - b9n2{r9c9 r8c9} ==> r8c3 ≠ 2
t-whip[4]: r9n9{c9 c7} - r2n9{c7 c4} - r2n2{c4 c3} - c2n2{r3 .} ==> r9c9 ≠ 2
hidden-single-in-a-block ==> r8c9 = 2
biv-chain[5]: r9n9{c9 c7} - r2n9{c7 c4} - r2n2{c4 c3} - b4n2{r4c3 r4c1} - b4n9{r4c1 r6c1} ==> r6c9 ≠ 9
g-whip[5]: r7n1{c3 c4} - b5n1{r6c4 r4c456} - c7n1{r4 r123} - r1n1{c9 c2} - b4n1{r5c2 .} ==> r8c1 ≠ 1
t-whip[6]: b9n6{r7c9 r9c9} - r9n9{c9 c7} - r2n9{c7 c4} - r2n2{c4 c3} - c2n2{r3 r9} - c2n5{r9 .} ==> r7c2 ≠ 6
whip[7]: r9n8{c1 c2} - b7n2{r9c2 r9c3} - r2n2{c3 c4} - r2n9{c4 c7} - r9n9{c7 c9} - r9n6{c9 c5} - b2n6{r2c5 .} ==> r9c1 ≠ 3
whip[7]: r9n8{c2 c1} - b7n2{r9c1 r9c3} - r2n2{c3 c4} - r2n9{c4 c7} - r9n9{c7 c9} - r9n6{c9 c5} - b2n6{r2c5 .} ==> r9c2 ≠ 3
whip[7]: r9n8{c2 c1} - b7n2{r9c1 r9c3} - r2n2{c3 c4} - r2n9{c4 c7} - r9n9{c7 c9} - r9n6{c9 c5} - b2n6{r2c5 .} ==> r9c2 ≠ 5
hidden-single-in-a-block ==> r7c2 = 5
t-whip[5]: b9n5{r9c7 r9c9} - r9n9{c9 c7} - b3n9{r3c7 r3c8} - c8n2{r3 r1} - b3n5{r1c8 .} ==> r4c7 ≠ 5
g-whip[7]: r2n9{c4 c7} - r9n9{c7 c9} - b9n6{r9c9 r7c789} - c4n6{r7 r8} - r8c1{n6 n3} - c3n3{r9 r4} - b5n3{r4c4 .} ==> r2c4 ≠ 3
g-whip[7]: r4n2{c1 c3} - r2n2{c3 c4} - r2n9{c4 c7} - r9n9{c7 c9} - b9n6{r9c9 r7c789} - c4n6{r7 r8} - r8c1{n6 .} ==> r4c1 ≠ 3
g-whip[7]: r7c9{n6 n4} - r7c8{n4 n3} - b6n3{r4c8 r4c7} - b5n3{r4c5 r456c4} - b2n3{r1c4 r2c456} - c3n3{r2 r789} - r8c1{n3 .} ==> r7c1 ≠ 6
g-whip[7]: r7c9{n6 n4} - r7c8{n4 n3} - b6n3{r4c8 r4c7} - b5n3{r4c5 r456c4} - b2n3{r1c4 r2c456} - c3n3{r2 r789} - r8c1{n3 .} ==> r7c3 ≠ 6
g-whip[8]: r9n9{c9 c7} - r2n9{c7 c4} - c4n6{r2 r789} - r9n6{c5 c123} - r8c1{n6 n3} - c7n3{r8 r4} - c3n3{r4 r2} - r2n2{c3 .} ==> r9c9 ≠ 5
whip[1]: b9n5{r9c7 .} ==> r3c7 ≠ 5
g-whip[8]: r9n9{c9 c7} - r2n9{c7 c4} - c4n6{r2 r789} - r9n6{c5 c123} - r8c1{n6 n3} - c7n3{r8 r4} - c3n3{r4 r2} - r2n2{c3 .} ==> r9c9 ≠ 4
whip[8]: r4n2{c3 c1} - c1n4{r4 r7} - r7c9{n4 n6} - r4n6{c9 c8} - r7c8{n6 n3} - b6n3{r4c8 r4c7} - r4n9{c7 c9} - r9c9{n9 .} ==> r4c3 ≠ 4
whip[1]: c3n4{r9 .} ==> r7c1 ≠ 4
g-whip[8]: b5n4{r4c6 r456c4} - r1n4{c4 c9} - r7c9{n4 n6} - r7c8{n6 n3} - r6c8{n3 n9} - r4n9{c9 c1} - r4n6{c1 c3} - r4n2{c3 .} ==> r4c8 ≠ 4
g-whip[8]: c1n9{r6 r4} - r4n2{c1 c3} - r2n2{c3 c4} - r2n9{c4 c7} - r9n9{c7 c9} - b9n6{r9c9 r7c789} - c4n6{r7 r8} - r8c1{n6 .} ==> r6c1 ≠ 3
g-whip[9]: r2n2{c3 c4} - r2n9{c4 c7} - r9n9{c7 c9} - b9n6{r9c9 r7c789} - c4n6{r7 r8} - r8c1{n6 n3} - r1c1{n3 n1} - r7c1{n1 n7} - r3n7{c1 .} ==> r3c3 ≠ 2
g-whip[9]: r2n2{c3 c4} - r2n9{c4 c7} - r9n9{c7 c9} - b9n6{r9c9 r7c789} - c4n6{r7 r8} - r8c1{n6 n3} - c3n3{r9 r4} - r4n2{c3 c1} - r1c1{n2 .} ==> r2c3 ≠ 1
whip[5]: r2n1{c6 c7} - r2n9{c7 c4} - r2n2{c4 c3} - r1c2{n2 n3} - r1c1{n3 .} ==> r1c4 ≠ 1
g-whip[9]: r3n8{c2 c1} - r9n8{c1 c2} - c2n2{r9 r1} - r2c3{n2 n3} - b2n3{r2c5 r1c4} - b5n3{r5c4 r4c456} - b6n3{r4c7 r456c8} - r7n3{c8 c1} - c1n7{r7 .} ==> r3c2 ≠ 6
t-whip[4]: c2n6{r5 r9} - r9n8{c2 c1} - b7n2{r9c1 r9c3} - r4n2{c3 .} ==> r4c1 ≠ 6
whip[5]: c2n6{r5 r9} - r8c1{n6 n3} - r1n3{c1 c4} - r7n3{c4 c8} - r6n3{c8 .} ==> r5c2 ≠ 3
t-whip[6]: c2n6{r5 r9} - r9n8{c2 c1} - b7n2{r9c1 r9c3} - r4n2{c3 c1} - c1n9{r4 r6} - c1n4{r6 .} ==> r5c1 ≠ 6
t-whip[6]: r4n6{c9 c3} - b1n6{r3c3 r3c1} - r8c1{n6 n3} - b4n3{r5c1 r6c2} - r1n3{c2 c4} - r5n3{c4 .} ==> r5c8 ≠ 6
whip[6]: b1n6{r3c3 r3c1} - r8c1{n6 n3} - c3n3{r7 r2} - b2n3{r2c5 r1c4} - r7n3{c4 c8} - c8n6{r7 .} ==> r4c3 ≠ 6
hidden-single-in-a-block ==> r5c2 = 6
whip[7]: r7n7{c3 c1} - r7n1{c1 c4} - b7n1{r7c3 r8c3} - r4c3{n1 n2} - r2c3{n2 n6} - c4n6{r2 r8} - r8c1{n6 .} ==> r7c3 ≠ 3
jellyfish-in-columns: n3{c3 c7 c5 c6}{r2 r4 r8 r9} ==> r8c4 ≠ 3, r8c1 ≠ 3, r4c8 ≠ 3, r4c4 ≠ 3
naked-single ==> r8c1 = 6
naked-pairs-in-a-block: b7{r9c1 r9c2}{n2 n8} ==> r9c3 ≠ 2
biv-chain[4]: r2c7{n1 n9} - b9n9{r9c7 r9c9} - r9n6{c9 c5} - c4n6{r7 r2} ==> r2c4 ≠ 1
biv-chain[4]: r2n9{c4 c7} - b9n9{r9c7 r9c9} - r9n6{c9 c5} - c4n6{r7 r2} ==> r2c4 ≠ 2
singles ==> r2c3 = 2, r9c2 = 2, r9c1 = 8, r3c2 = 8, r4c1 = 2, r6c1 = 9, r5c1 = 4, r3c3 = 6, r3c1 = 7, r7c3 = 7
whip[1]: b1n1{r1c2 .} ==> r1c9 ≠ 1
whip[1]: c9n1{r6 .} ==> r4c7 ≠ 1
whip[1]: r2n3{c6 .} ==> r1c4 ≠ 3
biv-chain[2]: r7n1{c4 c1} - c3n1{r8 r4} ==> r4c4 ≠ 1
whip[2]: c3n1{r8 r4} - b5n1{r4c5 .} ==> r8c4 ≠ 1
swordfish-in-rows: n4{r1 r6 r7}{c9 c8 c4} ==> r8c4 ≠ 4, r4c9 ≠ 4, r4c4 ≠ 4, r3c8 ≠ 4, r3c4 ≠ 4
stte