tso wrote:This is exactly the right place to post anything about a non-pappocom puzzle.
So far, I have not been able to find a clever solution -- certainly nothing worth posting.
Thanks for the reply. I'll have to let others judge whether this is worth it ...
Puzzle from the L.A. Times 2005-09-04:
- Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| . 7 8 | 2 . 6 | 3 1 . |
| 6 9 . | . . . | . 5 2 |
+-------+-------+-------+
| . . 7 | 9 . 1 | 4 . . |
| . 6 . | . . . | . 7 . |
| . . 3 | 6 . 8 | 5 . . |
+-------+-------+-------+
| 3 8 . | . . . | . 4 7 |
| . 2 5 | 1 . 3 | 6 9 . |
| . . . | . . . | . . . |
+-------+-------+-------+
EDIT: The method uses four forcing nets (three of which are chains), each involving 8 cells.
Here's a sketch, omitting only naked- & hidden-single exclusions:
---Preliminaries---
Preliminary simple exclusions (using the naked pair 12-12 in c7,
and the 4's locked in r5 box 5) lead to the candidate grid
- Code: Select all
{1245} {3} {124} {478} {1589} {4579} {789} {68} {469}
{45} {7} {8} {2} {59} {6} {3} {1} {49}
{6} {9} {14} {3478} {138} {47} {78} {5} {2}
{28} {5} {7} {9} {23} {1} {4} {68} {36}
{1289} {6} {129} {34} {235} {245} {89} {7} {139}
{149} {14} {3} {6} {7} {8} {5} {2} {19}
{3} {8} {169} {5} {269} {29} {12} {4} {7}
{7} {2} {5} {1} {4} {3} {6} {9} {8}
{149} {14} {1469} {78} {2689} {279} {12} {3} {5}
---Forcing net #1---
EDIT: This is a "net" but not a chain, in the sense that what's to the right of a '=>' is not always implied by the
immediately preceding step alone. (What's to the right of a '=>' is implied by the steps that collectively precede it.)
r2c1 = {4}
=> r3c3 = {1}
=> r1c3 = {2}
=> r5c3 = {9}
=> r5c7 = {8}
=> r3c7 = {7}
=> r1c7 = {9}
=> r2c9 = {4}
=> r2c1 = {5} (contradiction);
therefore r2c1 =/= {4}, which leads to
- Code: Select all
{124} {3} {124} {478} {158} {457} {789} {68} {69}
{5} {7} {8} {2} {9} {6} {3} {1} {4}
{6} {9} {14} {3478} {138} {47} {78} {5} {2}
{28} {5} {7} {9} {23} {1} {4} {68} {36}
{1289} {6} {129} {34} {235} {245} {89} {7} {139}
{149} {14} {3} {6} {7} {8} {5} {2} {19}
{3} {8} {169} {5} {26} {29} {12} {4} {7}
{7} {2} {5} {1} {4} {3} {6} {9} {8}
{149} {14} {1469} {78} {268} {279} {12} {3} {5}
---Forcing net #2 (a chain)---
r1c4 = {4}
=> r5c4 = {3}
=> r4c5 = {2}
=> r4c1 = {8}
=> r4c8 = {6}
=> r1c8 = {8}
=> r3c7 = {7}
=> r3c6 = {4}
=> r1c4 = {7,8} (contradiction);
therefore r1c4 =/= {4}, and simple exclusions (using the
hidden pair 34-34 in c4, and naked quad 6789 in r1) lead to
- Code: Select all
{124} {3} {124} {78} {15} {45} {789} {68} {69}
{5} {7} {8} {2} {9} {6} {3} {1} {4}
{6} {9} {14} {34} {138} {47} {78} {5} {2}
{28} {5} {7} {9} {23} {1} {4} {68} {36}
{1289} {6} {129} {34} {235} {245} {89} {7} {139}
{149} {14} {3} {6} {7} {8} {5} {2} {19}
{3} {8} {169} {5} {26} {29} {12} {4} {7}
{7} {2} {5} {1} {4} {3} {6} {9} {8}
{149} {14} {1469} {78} {268} {279} {12} {3} {5}
---Forcing net #3 (a chain)---
r3c4 = {4}
=> r3c6 = {7}
=> r3c7 = {8}
=> r1c8 = {6}
=> r4c8 = {8}
=> r4c1 = {2}
=> r4c5 = {3}
=> r5c4 = {4}
=> r3c4 = {3} (contradiction);
therefore r3c4 =/= {4}, which leads to
- Code: Select all
{124} {3} {124} {78} {15} {45} {789} {68} {69}
{5} {7} {8} {2} {9} {6} {3} {1} {4}
{6} {9} {14} {3} {18} {47} {78} {5} {2}
{28} {5} {7} {9} {23} {1} {4} {68} {36}
{1289} {6} {129} {4} {235} {25} {89} {7} {139}
{149} {14} {3} {6} {7} {8} {5} {2} {19}
{3} {8} {169} {5} {26} {29} {12} {4} {7}
{7} {2} {5} {1} {4} {3} {6} {9} {8}
{149} {14} {1469} {78} {268} {279} {12} {3} {5}
---Forcing net #4 (a chain)---
r1c8 = {8}
=> r1c4 = {7}
=> r3c6 = {4}
=> r1c6 = {5}
=> r5c6 = {2}
=> r4c5 = {3}
=> r4c9 = {6}
=> r4c8 = {8}
=> r1c8 = {6} (contradiction);
therefore r1c8 =/= {8}, which leads to the solution
- Code: Select all
+-------+-------+-------+
| 1 3 2 | 8 5 4 | 7 6 9 |
| 5 7 8 | 2 9 6 | 3 1 4 |
| 6 9 4 | 3 1 7 | 8 5 2 |
+-------+-------+-------+
| 2 5 7 | 9 3 1 | 4 8 6 |
| 8 6 1 | 4 2 5 | 9 7 3 |
| 9 4 3 | 6 7 8 | 5 2 1 |
+-------+-------+-------+
| 3 8 9 | 5 6 2 | 1 4 7 |
| 7 2 5 | 1 4 3 | 6 9 8 |
| 4 1 6 | 7 8 9 | 2 3 5 |
+-------+-------+-------+
(*If* guessing were allowed, the single guess r1c8 = 6 at the very start would lead to the solution using only naked- & hidden-singles!)