DEFISE wrote:I have not implemented Swordfish and Jellyfish.
So for me this puzzle is in W7 but also in g-W2 (without subsets in basics, only one g-Whip needed).
Amazing !
Yes, I chose it from my large controlled-bias collection as an extremely rare case where:
- the SER is small;
- the W and gW ratings are largely different;
- AND the W and S+W ratings are also largely different.
Most of the time, W = S+W = gW = S+gW; and when this is not true, the difference is rarely greater than 1.
- Code: Select all
Resolution state after Singles:
+----------------------+----------------------+----------------------+
! 1 257 345 ! 23457 23578 6 ! 347 378 9 !
! 234679 2579 34569 ! 23457 235789 24579 ! 1347 1378 248 !
! 23479 8 349 ! 1 2379 2479 ! 5 6 24 !
+----------------------+----------------------+----------------------+
! 2479 3 459 ! 6 2579 24579 ! 8 59 1 !
! 24689 1259 145689 ! 2345 12359 2459 ! 39 359 7 !
! 79 1579 159 ! 357 13579 8 ! 2 4 6 !
+----------------------+----------------------+----------------------+
! 38 4 138 ! 9 567 57 ! 167 2 58 !
! 5 6 2 ! 8 4 1 ! 79 79 3 !
! 89 19 7 ! 25 256 3 ! 1469 1589 458 !
+----------------------+----------------------+----------------------+
191 candidates, 1155 csp-links and 1155 links. Density = 6.37%
whip[1]: c9n5{r9 .} ==> r9c8 ≠ 5
whip[1]: r8n9{c8 .} ==> r9c8 ≠ 9, r9c7 ≠ 9
whip[1]: r8n7{c8 .} ==> r7c7 ≠ 7
whip[1]: r6n3{c5 .} ==> r5c5 ≠ 3, r5c4 ≠ 3
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 1 257 345 ! 23457 23578 6 ! 347 378 9 !
! 234679 2579 34569 ! 23457 235789 24579 ! 1347 1378 248 !
! 23479 8 349 ! 1 2379 2479 ! 5 6 24 !
+----------------------+----------------------+----------------------+
! 2479 3 459 ! 6 2579 24579 ! 8 59 1 !
! 24689 1259 145689 ! 245 1259 2459 ! 39 359 7 !
! 79 1579 159 ! 357 13579 8 ! 2 4 6 !
+----------------------+----------------------+----------------------+
! 38 4 138 ! 9 567 57 ! 16 2 58 !
! 5 6 2 ! 8 4 1 ! 79 79 3 !
! 89 19 7 ! 25 256 3 ! 146 18 458 !
+----------------------+----------------------+----------------------+
1) Solution in Subsets[3] (even if whips are active, they don't appear - except the whips[1]):
- Code: Select all
hidden-pairs-in-a-row: r5{n6 n8}{c1 c3} ==> r5c3 ≠ 9, r5c3 ≠ 5, r5c3 ≠ 4, r5c3 ≠ 1, r5c1 ≠ 9, r5c1 ≠ 4, r5c1 ≠ 2
whip[1]: r5n4{c6 .} ==> r4c6 ≠ 4
naked-triplets-in-a-row: r9{c1 c2 c8}{n8 n9 n1} ==> r9c9 ≠ 8, r9c7 ≠ 1
swordfish-in-rows: n7{r3 r4 r7}{c6 c1 c5} ==> r6c5 ≠ 7, r6c1 ≠ 7, r2c6 ≠ 7, r2c5 ≠ 7, r2c1 ≠ 7, r1c5 ≠ 7
stte
2) solution using a single g-whip[2], immediately after the Singles (no whip[1] needed)
- Code: Select all
g-whip[2]: r3n7{c1 c456} - c4n7{r1 .} ==> r6c1 ≠ 7
stte
A good example for learning g-whips.
3) solution in W7 with no Subset activated. Not interesting in itself.