.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 12345 9 8 ! 37 137 237 ! 1247 1256 124567 !
! 7 234 14 ! 389 6 5 ! 12489 1289 124 !
! 6 25 15 ! 4 179 2789 ! 3 12589 1257 !
+----------------------+----------------------+----------------------+
! 389 3678 2 ! 36789 5 36789 ! 1789 4 1367 !
! 3589 35678 5679 ! 1 379 4 ! 2789 23689 2367 !
! 3489 1 4679 ! 36789 2 36789 ! 5 3689 367 !
+----------------------+----------------------+----------------------+
! 2459 24567 3 ! 5679 479 1 ! 24 25 8 !
! 145 4567 14567 ! 2 8 367 ! 14 135 9 !
! 124589 2458 1459 ! 359 349 39 ! 6 7 12345 !
+----------------------+----------------------+----------------------+
213 candidates.
SER = 8.8
Notice the very large number of remaining candidates.
There is no meaningful correlation between the rating (be it SER or W) and the number of givens or candidates at the start or after Singles or after Singles+Whips[1].
However, a large number of candidates is often an indication that it will be hard to find a path with few steps. Of course, this has exceptions, as almost every claim in Sudoku.
The best starting point is Cenoman's, using symmetry, but I'll forget about it here. Notice that using symmetry only at the start (i.e. setting r5c5=3) doesn't change the SER or the W rating.
Here is the simplest-first solution, in W5 (consistent with SER = 8.5): Show z-chain[4]: r1n6{c8 c9} - r1n5{c9 c1} - r3c3{n5 n1} - c5n1{r3 .} ==> r1c8≠1
z-chain[4]: r1n6{c8 c9} - r1n5{c9 c1} - b1n3{r1c1 r2c2} - r2n2{c2 .} ==> r1c8≠2
z-chain[4]: r1n6{c9 c8} - r1n5{c8 c1} - r3c3{n5 n1} - c5n1{r3 .} ==> r1c9≠1
z-chain[4]: r1n6{c9 c8} - r1n5{c8 c1} - b1n3{r1c1 r2c2} - r2n2{c2 .} ==> r1c9≠2
z-chain[4]: r9n8{c1 c2} - r9n2{c2 c9} - r7c7{n2 n4} - c5n4{r7 .} ==> r9c1≠4
z-chain[4]: r9n8{c1 c2} - r9n2{c2 c9} - b9n3{r9c9 r8c8} - r8n5{c8 .} ==> r9c1≠5
z-chain[4]: r9n8{c2 c1} - r9n2{c1 c9} - r7c7{n2 n4} - c5n4{r7 .} ==> r9c2≠4
z-chain[4]: r9n8{c2 c1} - r9n2{c1 c9} - b9n3{r9c9 r8c8} - r8n5{c8 .} ==> r9c2≠5
z-chain[4]: c6n2{r1 r3} - b2n8{r3c6 r2c4} - r2n3{c4 c2} - r2n2{c2 .} ==> r1c7≠2
z-chain[4]: c4n5{r9 r7} - b8n6{r7c4 r8c6} - r8n3{c6 c8} - r8n5{c8 .} ==> r9c3≠5
t-whip[4]: r8n5{c3 c8} - r8n3{c8 c6} - r9c6{n3 n9} - r7n9{c5 .} ==> r7c1≠5
t-whip[4]: r2n2{c9 c2} - r2n3{c2 c4} - r1c4{n3 n7} - r3n7{c6 .} ==> r3c9≠2
whip[5]: c2n4{r8 r2} - c9n4{r2 r1} - r1n6{c9 c8} - r1n5{c8 c1} - b1n3{r1c1 .} ==> r9c3≠4
t-whip[4]: r9c6{n3 n9} - r9c3{n9 n1} - b1n1{r2c3 r1c1} - r1n2{c1 .} ==> r1c6≠3
z-chain[5]: c8n1{r3 r8} - r8n3{c8 c6} - r9c6{n3 n9} - r9c3{n9 n1} - r2n1{c3 .} ==> r3c9≠1, r1c7≠1
t-whip[3]: r1c7{n4 n7} - r3c9{n7 n5} - b1n5{r3c2 .} ==> r1c1≠4
whip[1]: r1n4{c9 .} ==> r2c7≠4, r2c9≠4
biv-chain[3]: b1n3{r1c1 r2c2} - r2n4{c2 c3} - b4n4{r6c3 r6c1} ==> r6c1≠3
biv-chain[3]: c9n4{r9 r1} - r1c7{n4 n7} - r3c9{n7 n5} ==> r9c9≠5
hidden-single-in-a-row ==> r9c4=5
whip[1]: c9n5{r3 .} ==> r1c8≠5, r3c8≠5
naked-single ==> r1c8=6
t-whip[3]: r2c9{n2 n1} - c8n1{r3 r8} - b9n3{r8c8 .} ==> r9c9≠2
whip[1]: r9n2{c2 .} ==> r7c1≠2, r7c2≠2
hidden-pairs-in-a-block: b7{n2 n8}{r9c1 r9c2} ==> r9c1≠9, r9c1≠1
biv-chain[3]: r7c1{n4 n9} - r9c3{n9 n1} - r2c3{n1 n4} ==> r8c3≠4
biv-chain[3]: c1n1{r8 r1} - r2c3{n1 n4} - b4n4{r6c3 r6c1} ==> r8c1≠4
biv-chain[3]: r8c1{n5 n1} - r9n1{c3 c9} - b9n3{r9c9 r8c8} ==> r8c8≠5
singles ==> r7c8=5, r7c7=2
biv-chain[4]: r2c3{n1 n4} - b4n4{r6c3 r6c1} - r7c1{n4 n9} - r9c3{n9 n1} ==> r3c3≠1, r8c3≠1
24 Singles
finned-x-wing-in-columns: n6{c2 c4}{r7 r4} ==> r4c6≠6
x-wing-in-rows: n6{r4 r7}{c2 c4} ==> r6c4≠6
finned-x-wing-in-rows: n8{r3 r6}{c8 c6} ==> r4c6≠8
x-wing-in-columns: n8{c6 c8}{r3 r6} ==> r6c4≠8
hidden-pairs-in-a-block: b5{n6 n8}{r4c4 r6c6} ==> r6c6≠9, r6c6≠7, r6c6≠3, r4c4≠9, r4c4≠7, r4c4≠3
finned-x-wing-in-columns: n9{c4 c7}{r2 r6} ==> r6c8≠9
stte
This is a long path (30 non-W1 steps).
By allowing longer chains, one can find an 8-step path in W8:
whip[7]: b1n3{r2c2 r1c1} - b1n4{r1c1 r2c3} - r2c9{n4 n1} - c8n1{r3 r8} - c1n1{r8 r9} - r9n2{c1 c9} - b9n3{r9c9 .} ==> r2c2≠2whip[1]: r2n2{c9 .} ==> r1c7≠2, r1c8≠2, r1c9≠2, r3c8≠2, r3c9≠2
whip[8]: r7c7{n2 n4} - r8c7{n4 n1} - r1c7{n1 n7} - r1c4{n7 n3} - r1c6{n3 n2} - c1n2{r1 r9} - c1n1{r9 r1} - r1c5{n1 .} ==> r7c8≠2singles ==> r7c8=5, r9c4=5
whip[8]: r3c3{n5 n1} - r2c3{n1 n4} - r6n4{c3 c1} - r8c1{n4 n1} - r9c3{n1 n9} - r7c1{n9 n2} - r9n2{c2 c9} - r9n1{c9 .} ==> r1c1≠5singles ==> r1c9=5, r1c8=6
whip[5]: r9c6{n3 n9} - r9c5{n9 n4} - c9n4{r9 r2} - r2c3{n4 n1} - r9c3{n1 .} ==> r9c9≠3hidden-single-in-a-block ==> r8c8=3
whip[1]: c8n1{r3 .} ==> r1c7≠1, r2c7≠1, r2c9≠1, r3c9≠1
singles ==> r3c9=7, r1c7=4, r2c9=2, r7c7=2, r8c7=1, r9c9=4, r7c5=4, r7c1=9, r9c3=1, r2c3=4, r2c2=3, r3c3=5, r3c2=2, r1c1=1, r9c2=8, r9c1=2, r3c5=1, r2c8=1, r1c6=2, r8c2=4, r8c1=5, r5c2=5, r6c1=4, r4c9=1, r5c8=2
whip[6]: r5n6{c9 c3} - r4c2{n6 n7} - r7n7{c2 c4} - c6n7{r8 r6} - r6n3{c6 c4} - r1c4{n3 .} ==> r5c9≠3singles ==> r5c9=6, r6c9=3
whip[6]: r5n8{c1 c7} - r6c8{n8 n9} - r3n9{c8 c6} - c4n9{r2 r4} - r4n3{c4 c6} - r9c6{n3 .} ==> r4c1≠8singles ==> r4c1=3, r5c1=8, r5c5=3, r1c5=7, r1c4=3, r9c5=9, r9c6=3
finned-x-wing-in-columns: n6{c3 c6}{r8 r6} ==> r6c4≠6whip[6]: r6c8{n8 n9} - c7n9{r5 r2} - r2c4{n9 n8} - r6c4{n8 n7} - r4n7{c6 c2} - r7n7{c2 .} ==> r4c7≠8stte