+--------------------------------------------------------------+
| 15 57 17 | 8 2 3 | 9 4 6 |
| 2 46 3 | 46 5 9 | 1 7 8 |
| 46 8 9 | 1 46 7 | 5 23 23 |
|--------------------+--------------------+--------------------|
| 7 9 2 | 46 1 5 | 346 8 34 |
| 8 3 46 | 9 7 2 | 46 5 1 |
| 46 1 5 | 3 46 8 | 2 9 7 |
|--------------------+--------------------+--------------------|
| 15 26 8 | 57 3 14 | 47 26 9 |
| 3 2457 147 | 57 9 6 | 8 12 245 |
| 9 4567 1467 | 2 8 14 | 347 136 345 |
+--------------------------------------------------------------+
# 45 eliminations remain
(7=1)r1c3-(1=5)r1c1-(5=1)r7c1-(1=4)r7c6-(4=7)r7c7-(7=5)r7c4-(5=7)r8c4 => r8c3<>7
(4=6)r5c3-(6=4)r5c7-(4=7)r7c7-(7=5)r7c4-(5=1)r7c1-(1=4)r8c3-loop => r9c3<>14, r49c7<>4
netvope wrote:What solver did you use?
*--------------------------------------------------------*
| 15 57 17 | 8 2 3 | 9 4 6 |
| 2 46 3 | 46 5 9 | 1 7 8 |
| 46 8 9 | 1 46 7 | 5 23 23 |
|------------------+------------------+------------------|
| 7 9 2 | 46 1 5 | 346 8 34 |
| 8 3 46 | 9 7 2 | 46 5 1 |
| 46 1 5 | 3 46 8 | 2 9 7 |
|------------------+------------------+------------------|
| 15 26 8 | 57 3 14 | 47 26 9 |
| 3 2457 147 | 57 9 6 | 8 12 245 |
| 9 4567 1467 | 2 8 14 | 347 136 345 |
*--------------------------------------------------------*
Candidates in r9c6 will force r8c3<>7 (Double implication chains)
r9c6=1: r9c6=1 => r7c6=4 => r7c7=7 => r7c4=5 => r8c4=7 => r8c3<>7
r9c6=4: r9c6=4 => r7c6=1 => r7c1=5 => r1c1=1 => r1c3=7 => r8c3<>7
Threfore r8c3<>7
*-----------------------------------------------------------*
| 15 57 17 | 8 2 3 | 9 4 6 |
| 2 46 3 | 46 5 9 | 1 7 8 |
| 46 8 9 | 1 46 7 | 5 23 23 |
|-------------------+-------------------+-------------------|
| 7 9 2 | 46 1 5 | 346 8 34 |
| 8 3 46 | 9 7 2 | 46 5 1 |
| 46 1 5 | 3 46 8 | 2 9 7 |
|-------------------+-------------------+-------------------|
| 15 26 8 | 57 3 14 | 47 26 9 |
| 3 2457 147 | 57 9 6 | 8 12 245 |
| 9 4567 1467 | 2 8 14 | 347 136 345 |
*-----------------------------------------------------------*
netvope wrote:I think the puzzle is almost solved and it probably needs only one or two moves. For many of the remaining cells, if you pick a number for one random cell, you will be able to proceed to the complete solution with elementary techniques. However that would be considered cheating I guess
pjb wrote:When I put this puzzle into my solver, it solves the puzzle using the multi-digit method in two steps. It shows how pattern analysis is a useful and overlooked technique.
+--------------------------------------------------------------+
| 15 57 17 | 8 2 3 | 9 4 6 |
| 2 46 3 | 46 5 9 | 1 7 8 |
| 46 8 9 | 1 46 7 | 5 23 23 |
|--------------------+--------------------+--------------------|
| 7 9 2 | 46 1 5 | 346 8 34 |
| 8 3 46 | 9 7 2 | 46 5 1 |
| 46 1 5 | 3 46 8 | 2 9 7 |
|--------------------+--------------------+--------------------|
| 15 26 8 | 57 3 14 | 47 26 9 |
| 3 2457 147 | 57 9 6 | 8 12 245 |
| 9 4567 1467 | 2 8 14 | 347 136 345 |
+--------------------------------------------------------------+
# 45 eliminations remain
template '5' = r1c1,r2c5,r3c7,r4c6,r5c8,r6c3,r7c4,r8c2,r9c9 contains r7c4
template '5' = r1c1,r2c5,r3c7,r4c6,r5c8,r6c3,r7c4,r8c9,r9c2 contains r7c4
template '5' = r1c2,r2c5,r3c7,r4c6,r5c8,r6c3,r7c1,r8c4,r9c9 contains r1c2
template '7' = r1c2,r2c8,r3c6,r4c1,r5c5,r6c9,r7c4,r8c3,r9c7 conflict
template '7' = r1c2,r2c8,r3c6,r4c1,r5c5,r6c9,r7c7,r8c4,r9c3
template '7' = r1c3,r2c8,r3c6,r4c1,r5c5,r6c9,r7c4,r8c2,r9c7
template '7' = r1c3,r2c8,r3c6,r4c1,r5c5,r6c9,r7c7,r8c4,r9c2
for '7' = { r1c2,r2c8,r3c6,r4c1,r5c5,r6c9,r7c4,r8c3,r9c7 }, '5' fails for { r1c2,r7c4 }
Templates (A: 1) <> 7 r8c3
template '4' = r1c8,r2c2,r3c5,r4c4,r5c7,r6c1,r7c6,r8c3,r9c9
template '4' = r1c8,r2c2,r3c5,r4c4,r5c7,r6c1,r7c6,r8c9,r9c3
template '4' = r1c8,r2c4,r3c1,r4c7,r5c3,r6c5,r7c6,r8c2,r9c9
template '4' = r1c8,r2c4,r3c1,r4c7,r5c3,r6c5,r7c6,r8c9,r9c2
template '4' = r1c8,r2c4,r3c1,r4c9,r5c3,r6c5,r7c6,r8c2,r9c7
template '4' = r1c8,r2c4,r3c1,r4c9,r5c3,r6c5,r7c7,r8c2,r9c6 conflict
template '7' = r1c2,r2c8,r3c6,r4c1,r5c5,r6c9,r7c7,r8c4,r9c3 contains r7c7
template '7' = r1c3,r2c8,r3c6,r4c1,r5c5,r6c9,r7c4,r8c2,r9c7 contains r8c2
template '7' = r1c3,r2c8,r3c6,r4c1,r5c5,r6c9,r7c7,r8c4,r9c2 contains r7c7
for '4' = { r1c8,r2c4,r3c1,r4c9,r5c3,r6c5,r7c7,r8c2,r9c6 }, '7' fails for { r7c7,r8c2 }
Templates (A: 2) <> 4 r7c7,r9c6
daj95376 wrote:pjb wrote:When I put this puzzle into my solver, it solves the puzzle using the multi-digit method in two steps. It shows how pattern analysis is a useful and overlooked technique.
I presume that you are referring to: ...
ronk wrote:Why do you think the POM should be limited to two (digit) layers in this case? Might not the use of additional layers result in shorter chains or simpler patterns?
ronk wrote:BTW did your look for the chains or networks that produce your eliminations?
(4-7)r8c2 = r8c4 - r7c4 = (7-4)r7c7
(4 )r8c3 - r5c3 = r5c7 - ( 4)r7c7
(4 )r8c9 - ( 4)r7c7
daj95376 wrote:Since my results cracked the puzzle in two steps -- ala pjb -- I was satisfied with the results.