- Code: Select all
------------
4.6|.2.|9.8
..8|...|5..
...|...|...
------------
6..|285|..9
...|9.3|...
8..|761|..4
------------
...|...|...
..5|...|3..
2.1|.9.|6.7
------------
------------
4.6|.2.|9.8
..8|...|5..
...|...|...
------------
6..|285|..9
...|9.3|...
8..|761|..4
------------
...|...|...
..5|...|3..
2.1|.9.|6.7
------------
4 35 6 | 35 2 7 | 9 1 8
1379 1279 8 | 146 13 469 | 5 2467 236
13579 1279 279 | 14568 135 4689 | 47 2467 236
-------------------------------------------------------
6 147 347 | 2 8 5 | 17 37 9
157 127 27 | 9 4 3 | 178 5678 156
8 59 39 | 7 6 1 | 2 35 4
-------------------------------------------------------
379 46789 479 | 14568 1357 2468 | 148 24589 125
79 46789 5 | 1468 17 2468 | 3 2489 12
2 348 1 | 3458 9 48 | 6 458 7
4 35 6 | 35 2 7 | 9 1 8
1379 1279* 8 | 146 13 469 | 5 2467 236
13579 1279* 279 | 14568 135 4689 | 47 2467 236
-------------------------------------------------------
6 -147 347 | 2 8 5 | 17 37 9
157^ 127* 27^ | 9 4 3 | 178 5678 156
8 59* 39 | 7 6 1 | 2 35 4
-------------------------------------------------------
379 46789 479 | 14568 1357 2468 | 148 24589 125
79 46789 5 | 1468 17 2468 | 3 2489 12
2 348 1 | 3458 9 48 | 6 458 7
Wolfgang wrote:Bob Hansons solver showed me the marked cells, which allow the elimination of 17 in r4c2 (what solves the puzzle). But i dont know how to argue it as an ALS
..............
A and B have a common cell (r5c2):
A=1257 in r5c123
B=12579 in r2356 (sic)
4 35 6 | 35 2 7 | 9 1 8
137 A1279 8 | 46 13 469 | 5 2467 236
1357 A1279 B279 | 468 135 4689 | 47 2467 236
-----------------+---------------+--------------
6 A147 -347 | 2 8 5 | 17 37 9
157 A127 B27 | 9 4 3 | 178 678 156
8 59 39 | 7 6 1 | 2 35 4
-----------------+---------------+--------------
37 -4678 B47 | 1468 35 2468 | 148 9 125
9 -468 5 | 1468 7 2468 | 3 248 12
2 -348 1 | 35 9 48 | 6 458 7
Set A = {r2c45c2} = {12479}
Set B = {r357c3} = {2479}
x = 9
z = 4
eliminating all 4s that can "see" both 4s in r4c3 and r7c4
tarek wrote:On the other hand, as there are many simpler moves that don't achive solution, I was wondering if that solver actually looks for "The Best next move", skipping those non productive essential simpler moves
Wolfgang wrote:No, it did not, it was me, who skipped the other moves. Also it came 2 times with the same sets for eliminating 1 and 7 and had an extra move between them.
4 35 6 | 35 2 7 | 9 1 8
1379 1279^ 8 | 146 13 469 | 5 2467 236
13579 1279^ 279 | 14568 135 4689 | 47 2467 236
-------------------------------------------------------
6 -147 347 | 2 8 5 | 17% 37% 9
157 127^ 27 | 9 4 3 | 178 5678 156
8 59* 39 | 7 6 1 | 2 35% 4
-------------------------------------------------------
379 46789 479 | 14568 1357 2468 | 148 24589 125
79 46789 5 | 1468 17 2468 | 3 2489 12
2 348 1 | 3458 9 48 | 6 458 7
Eliminating 17 from r4c2(ALS-XY A=59 in r6c2(*) B=1279 in r5c2,r2c2,r3c2(^) C=1357 in r6c8,r4c8,r4c7(%) x=9 y=5 z=1&7)
ronk wrote:Sets A and B cannot have a common cell...
Wolfgang wrote:But i still think, my reasoning above is correct, isnt it ? So is it no ALS because of the common cell, but the argumentation is the same ?
............
A and B have a common cell (r5c2):
A=1257 in r5c123
B=12579 in r2356
1 and 7 in r4c2 both lock 5 in A (r5c1) and in B (r5c2)
Wolfgang wrote:
- Code: Select all
4 35 6 | 35 2 7 | 9 1 8
1379 1279* 8 | 146 13 469 | 5 2467 236
13579 1279* 279 | 14568 135 4689 | 47 2467 236
-------------------------------------------------------
6 -147 347 | 2 8 5 | 17 37 9
157^ 127* 27^ | 9 4 3 | 178 5678 156
8 59* 39 | 7 6 1 | 2 35 4
-------------------------------------------------------
379 46789 479 | 14568 1357 2468 | 148 24589 125
79 46789 5 | 1468 17 2468 | 3 2489 12
2 348 1 | 3458 9 48 | 6 458 7
Is this a valid ALS reasoning ?
A and B have a common cell (r5c2):
A=1257 in r5c123
B=12579 in r2356
1 and 7 in r4c2 both lock 5 in A (r5c1) and in B (r5c2)