Blue's 2011 Puzzle

Post puzzles for others to solve here.

Blue's 2011 Puzzle

Postby David P Bird » Fri Oct 23, 2015 3:14 pm

This is no one-stepper race but could be a good test for a chain tracking solver or perhaps Don M.

6..5....7.2.1...3...7...8...1.45......2.3.41....21......63..9...5...1.4.9.......8
Code: Select all
   *--------------------------*--------------------------*--------------------------*
   | <6>     3489    13489    | <5>     2489    23489    | 12      29      <7>      |
   | 458     <2>     4589     | <1>     46789   46789    | 56      <3>     4569     |
   | 1345    349     <7>      | 69      2469    23469    | <8>     2569    124569   |
   *--------------------------*--------------------------*--------------------------*
   | 378     <1>     389      | <4>     <5>     6789     | 2367    26789   2369     |
   | 578     6789    <2>      | 6789    <3>     6789     | <4>     <1>     569      |
   | 34578   346789  34589    | <2>     <1>     6789     | 3567    56789   3569     |
   *--------------------------*--------------------------*--------------------------*
   | 12478   478     <6>      | <3>     2478    24578    | <9>     257     125      |   
   | 2378    <5>     38       | 6789    26789   <1>      | 2367    <4>     236      |
   | <9>     347     134      | 67      2467    24567    | 123567  2567    <8>      |
   *--------------------------*--------------------------*--------------------------*

Opening Move: Show
SK Loop
(89=34)r13c2 - (34=78)r79c3 - (78=23)r8c13 - (23=67)r8c79 -
(67=25)r79c8 - (25=69)r13c8 - (69=45)r2c79 - (45=89)r2c13 - Loop
Eliminations: (89)r1c3, (4)r2c5, (4)r2c6, (69)r3c9, (2)r4c8, (34)r6c2, (5)r6c8, (78)r7c1, (2)r8c5, (67)r9c7

Blue composed this puzzle (which I've morphed) for a discussion in 2011 on the now defunct programmers forum. It has a tempting pattern which I've been exploring for a possible theorem - but with no success.

Following the opening move, my eventual solution path has 9 (non-net) steps, not counting follow-on locked candidate eliminations. However I'm wondering if I've missed any almost patterns?

I'll give it a few days before posting anything further.

DPB
.
David P Bird
2010 Supporter
 
Posts: 1043
Joined: 16 September 2008
Location: Middle England

Re: Blue's 2011 Puzzle

Postby JC Van Hay » Mon Oct 26, 2015 3:57 pm

Code: Select all
+-------------------------+----------------------+--------------------------+
| 6       (3489)   134-89 | 5     (2489)  234-89 | 12       (29)    7       |
| 458     2        4589   | 1     679-48  46789  | 56       3       4569    |
| 1345    (349)    7      | (69)  (2469)  234-69 | 8        (2569)  1245-69 |
+-------------------------+----------------------+--------------------------+
| 378     1        389    | 4     5       6789   | 2367     6789-2  2369    |
| 578     679-8    2      | 6789  3       6789   | 4        1       569     |
| 34578   679-348  34589  | 2     1       6789   | 3567     6789-5  3569    |
+-------------------------+----------------------+--------------------------+
| 124-78  (478)    6      | 3     (2478)  245-78 | 9        (257)   125     |
| 2378    5        38     | 6789  679-28  1      | 2367     4       236     |
| 9       (347)    134    | (67)  (2467)  245-67 | 1235-67  (2567)  8       |
+-------------------------+----------------------+--------------------------+
Rank 0 Logic : the solutions of {R1379C258, R39C4} exclude 26 candidates.
Code: Select all
+----------------------+-----------------------+--------------------------+
| 6        3489  134   | 5     2489     234    | (12)     29       7      |
| 458      2     4589  | 1     (+7-69)  489-67 | (+6-5)   3        49-56  |
| 34(1-5)  349   7     | (69)  2469     234    | 8        29-6(5)  24(15) |
+----------------------+-----------------------+--------------------------+
| 378      1     389   | 4     5        6789   | 37-6(2)  6789     369(2) |
| 78(5)    679   2     | 6789  3        6789   | 4        1        69(5)  |
| 34578    679   34589 | 2     1        6789   | 357-6    6789     3569   |
+----------------------+-----------------------+--------------------------+
| 124      478   6     | 3     248(-7)  245    | 9        257      (15-2) |
| 2378     5     38    | 6789  69(-7)   1      | 237-6    4        236    |
| 9        347   134   | (67)  246(-7)  245    | 1235     2567     8      |
+----------------------+-----------------------+--------------------------+
SWing[(12)r1c7, 1C9, 2R4] - 2r7c9=SWing[(15)r7c9, 1R3, 5R5] - 5r3c1=5r3c89 - 5r2c79; r2c7=6
XYWing(679)B28 - 7r789c5=7r2c5
Code: Select all
+----------------------+--------------------+--------------------+
| 6      489(3)  14(3) | 5       2489  234  | 12      29    7    |
| 458    2       4589  | 1       7     489  | 6       3     49   |
| 4(13)  49(3)   7     | 69      2469  234  | 8       259   1245 |
+----------------------+--------------------+--------------------+
| 378    1       (389) | 4       5     6789 | 237     6789  2369 |
| (578)  (679)   2     | 679(8)  3     6789 | 4       1     69-5 |
| 34578  (679)   34589 | 2       1     6789 | 37(5)   6789  3569 |
+----------------------+--------------------+--------------------+
| 24(1)  478     6     | 3       248   245  | 9       257   (15) |
| 2378   5       (38)  | 679(8)  69    1    | 237     4     236  |
| 9      47(3)   14(3) | 67      246   245  | 12(35)  2567  8    |
+----------------------+--------------------+--------------------+
5r6c7 5r9c7
      5r7c9 1r7c9
            1r7c1 1r3c1
      3r9c7             3r9c2  3r9c3
                  3r3c1 3r13c2 3r3c3
                               3r8c3 8r8c3
                               3r4c3 8r4c3 9r4c3
                                           9r5c2 6r5c2 7r5c2
                                           9r6c2 6r6c2 7r6c2
                                     8r8c4                   8r5c4
                                                       7r5c1 8r5c1 5r5c1 :=> r5c1=5=r2c3
Code: Select all
]+--------------------+----------------------+------------------+
| 6     3489  134    | 5       2489  234    | 12    29    7    |
| 48    2     5      | 1       7     48(9)  | 6     3     4(9) |
| 134   349   7      | 69      2469  234    | 8     259   1245 |
+--------------------+----------------------+------------------+
| 378   1     38(9)  | 4       5     678(9) | 237   6789  2369 |
| 5     67-9  2      | 678(9)  3     678(9) | 4     1     6-9  |
| 3478  67-9  348(9) | 2       1     678(9) | 357   6789  3569 |
+--------------------+----------------------+------------------+
| 124   478   6      | 3       248   245    | 9     257   15   |
| 2378  5     38     | 6789    69    1      | 237   4     236  |
| 9     347   134    | 67      246   245    | 1235  2567  8    |
+--------------------+----------------------+------------------+
Claiming(9C3)-9r56c2; XWing(9R2B5)-9r5c9; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Blue's 2011 Puzzle

Postby David P Bird » Tue Oct 27, 2015 6:49 pm

JC, well it looks as if it's just you and me! Thanks for your solution which I've learned from.

We work in quite different ways and there's little point in arguing over our differences, but I can outline my approach to you so at least you can understand it.

When I devised the GEM marking system I found it could be used to find net-based deductions which made most ordinary puzzles too easy and took all the enjoyment out of solving them. I therefore disciplined myself only to use the linear AICs identified by GEM. Taken to extreme though, this would make the harder puzzles impossible to solve. My compromise was to allow recognisable pattern inferences to be used which depend on net-based analysis to prove. Ever since I've been enjoying trying to increase the difficulty of the puzzles I can solve. This suits me as I prefer to look on Sudoku puzzles more like a game of patience than a race.

For the opening move I can therefore use the recognisable SK loop pattern and apply it immediately, but it then needs a naked quad and an (8)XWing to reach the position after your first rank 0 logic step. (You didn't use the use the naked quad, but you didn't need it). So when I posted the opening post my solution was:

Phase 1
SK Loop (89=34)r13c2 - (34=78)r79c3 - (78=23)r8c13 - (23=67)r8c79 -
......... (67=25)r79c8 - (25=69)r13c8 - (69=45)r2c79 - (45=89)r2c13 - Loop
Eliminations: (89)r1c3, (4)r2c5, (4)r2c6, (69)r3c9, (2)r4c8, (34)r6c2, (5)r6c8, (78)r7c1, (2)r8c5, (67)r9c7
..(6789)NakedQuad:r2456c6 => r1c6 <> 89, r3c6<>69, r7c6<> 78, r9c6 <> 67
(8)2Fish:r17c25 => r28c5,r56c2 <> 8

Phase 2
(7)r2c5 = (7-8)r2c6 = (8)r1c5 - (8)r7c5 = (8-9)r8c4 = (9)r8c5 => r2c5 <> 9, r8c5 <> 7
(78)r2c56 = (8)r1c5 - (8)r7c5 = (8)r8c4 - (8=3)r8c3 - (3)r9c23 = (3-1)r9c7 = (1)r7c9 - (1)r7c1 = (1-5)r3c1
.. = (5)r2c13 - (5=6)r2c7 => r2c56 <> 6 (r2c5=7)
.. (7)boxline:b8c4 => r5c4 <> 7
.. (6)boxlines:b2r3 & c6b5 => r3c8 <> 6, r5c4 <> 6
(46)r2c79 = (4-1)r3c9 = (1-5)r3c1 = (5)r2c13 => r2c79 <> 5 (r2c7 = 6)
.. (5)boxline:b3r3 => r3c1 <> 5
At this point the grid is very close to yours where you use the weak and strong inference set matrix

Phase 3
(1)r7c9 = (1-3)r9c7 = (3)r9c23 - (3=8)r8c3 - (8)r7c2 = (8)r1c2 - (58=4)r2c13 - (4)r2c9 = (4)r3c9 => r3c9 <> 1
.. Singles (1)r1c7,r3c1,r9c3,r7c9
(5)r2c3 = (5)r6c3 - (5)r6c7 = (5-3)r9c7 = (3)r9c2 - (3=8)r8c3 => r2c3 <> 8
(5)r2c3 = (5)r6c3 - (5)r6c7 = (5-3)r9c7 = (3)r9c2 - (3)r13c2 = (3)r1c3 - (3=89)r48c3 => r2c3 <> 9
.. (9)boxline:b1c2 => r56c2 <> 9
.. (67)NakedPair:r56c2 => r456c1,r79c2 <> 7
.. Singles (7)r7c8,r8c1,r9c4, (2)r7c1, (5)r7c6
.. (2)boxline:b7r9 => r9c78 <> 2, c8b3 => r3c9 <> 2
.. (3)linebox:c1b4 => r46c3 <> 3
.. (4)boxline:b7c2 => r13c2 <> 4
(9)r2c9 = (9)r2c6 - (9)r456c6 = (9)r5c4 => r5c9 <> 9
(5)r9c7 = (5)r6c7 - (5=6)r5c9 - (6)r8c9 = (6)r9c8 => r9c8 <> 5
Singles to the end.

REVISED VERSION

Phase 2
Translating your SWings into the same notation style (thank you), my phase2 can be replaced by:
(2)r4c9 = (2)r4c7 - (2=1) - (1)r3c9 = (1)r7c9 => r7c9 <> 2
(1)r3c1 = (1)r3c9 - (1=5)r7c9 - (5)r5c9 = (5)r5c1 => r3c1 <> 5
.. (5)linebox:r3b3 => r2c79 <> 5, (single (6)r2c7)
.. (6)linebox:c6b5 => r5c4 <> 6
(9)r2c9 = (29-5)r13c8 = (5-4)r3c9 = (4)r2c9 - loop => r3c9 <> 12
. . Singles (1)r1c7,r7c9,r9c3,r3c1
. . BoxLine:b3c8 => r79c8 <> 2
(The (7)r789c5 eliminations aren’t needed)

Phase 3 (Colouring Version)
Subsequent analysis has shown there is a logical error in this procedure that leaves a loophole. The outcome is that the concept is OK but needs more eliminations to be made in the corner boxes before it can be applied. In this puzzle by the time these further eliminations are made, the puzzle is virtually solved, and needs only two more chains to finish so it becomes over-kill. Consequently it's unlikely that the method will ever be worthwhile, and my efforts have been wasted ****** ****! (expletives redacted)

Repeating the SK Loop:
(89=34)r13c2 - (34=78)r79c3 - (78=23)r8c13 - (23=67)r8c79 -
(67=25)r79c8 - (25=69)r13c8 - (69=45)r2c79 - (45=89)r2c13 - Loop
The coloured segment is now (25=9)r13c8 - (69"=4')r2c79 following these reductions (shown below).
At parity I when 4' is true, every term in the loop must hold a single truth
At parity II when 9" is true, in the brackets the left terms will hold two truths and right ones will be false.

Following the loop around, where any digit in a left hand pair is restricted to single cell it can be marked (0") and its companion digit in the other cell can be marked (0=) which shows it must be true at p" but could possibly be true at p'.

This is the logical error. The digits restricted to a single cell can only be marked (0") if the companion digit is locked in the cell pair. Otherwise it should be marked (0=) as there is the chance that it could be also be true at p'.

The other digits in the SK loop boxes can be marked according to the legend below.
Code: Select all
 *---------------------------*---------------------------*---------------------------*
 | <6>      3.4.8"9. 3"4'    | <5>      2489     234     | 1        2=9.     <7>     |
 | 4:58.    <2>      4:58.9. | <1>      79       789     | 6        <3>      4'9"    |
 | 1        3.4.9=   <7>     | 69       2469     234     | <8>      2.5"9.   4"5'    |
 *---------------------------*---------------------------*---------------------------*
 | 378      <1>      389     | <4>      <5>      6789    | 237      6789     2369    |
 | 578      679      <2>     | 789      <3>      6789    | <4>      <1>      569     |
 | 34578    679      34589   | <2>      <1>      6789    | 357      6789     3569    |
 *---------------------------*---------------------------*---------------------------*
 | 2"4'     4=7.8.   <6>     | <3>      2478     245     | <9>      2.5.7=   1       |
 | 2'3.7"8. <5>      3.8=    | 6789     679      <1>     | 237.     <4>      2:3:6'  |
 | <9>      3"4.7.   1       | 67       2467     245     | 2.3.5"   2.5.6"7. <8>     |
 *---------------------------*---------------------------*---------------------------*
GEM Marks: Par   (0') (0") True at own parity false at the other
           Super (0-) (0=) True at own parity possibly true at the other
           Sub   (0.) (0:) Possibly true at own parity false at the other

In box1 (4)r13c2 can't be true as at p' (4')r1c3 will be true and at p" (8"9=)r13c2 will be true
. . (4)linebox:c2b7 => r7c1 <> 4
Single (2)r7c1
This proves that p" is true and all (0') and (0.) digits are false, effectively solving the puzzle.

When I posted I felt that I must have missed an almost pattern that would do away with that 15 link chain in phase 2, but you've showed me I was looking in the wrong place.

The tempting pattern I mentioned in the opening post is that in the solution (6789)r2c56,r8c45 and (6789)r56c3,r46c8 are locked quads, but I can't prove that will always happen from the distribution of the givens.

I'm still considering the best way to notate the colouring deductions.

DPB

TAGdpbSKLoop

Edited 29th Oct when blunder discovered.
David P Bird
2010 Supporter
 
Posts: 1043
Joined: 16 September 2008
Location: Middle England


Return to Puzzles