.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 1478 3478 5 ! 137 2 3789 ! 6 4789 489 !
! 678 9 378 ! 367 78 4 ! 257 1 258 !
! 2 4678 178 ! 5 178 6789 ! 79 4789 3 !
+----------------------+----------------------+----------------------+
! 145789 24578 6 ! 247 3 57 ! 12579 2789 12589 !
! 4579 23457 2379 ! 8 457 1 ! 23579 23679 2569 !
! 1578 23578 12378 ! 267 9 567 ! 4 2378 1258 !
+----------------------+----------------------+----------------------+
! 3 568 89 ! 14 1458 2 ! 19 469 7 !
! 678 1 278 ! 9 478 378 ! 23 5 246 !
! 579 257 4 ! 137 6 357 ! 8 239 129 !
+----------------------+----------------------+----------------------+
198 candidates.
Can be solved with a few elementary steps (nothing more complicated than bivalue-chains[3] and swordfish):
hidden-pairs-in-a-block: b9{n4 n6}{r7c8 r8c9} ==> r8c9≠2, r7c8≠9
hidden-pairs-in-a-row: r2{n2 n5}{c7 c9} ==> r2c9≠8, r2c7≠7
finned-swordfish-in-rows: n1{r9 r1 r6}{c9 c4 c1} ==> r4c1≠1
whip[1]: r4n1{c9 .} ==> r6c9≠1
biv-chain[3]: r3c7{n7 n9} - r7c7{n9 n1} - c5n1{r7 r3} ==> r3c5≠7
biv-chain[3]: r7c4{n1 n4} - b5n4{r4c4 r5c5} - c5n5{r5 r7} ==> r7c5≠1
singles ==> r3c5=1, r1c1=1, r6c3=1
whip[1]: c1n4{r5 .} ==> r4c2≠4, r5c2≠4
biv-chain[3]: c2n4{r1 r3} - c2n6{r3 r7} - r7c8{n6 n4} ==> r1c8≠4
biv-chain[3]: r2n3{c3 c4} - r1c4{n3 n7} - r2c5{n7 n8} ==> r2c3≠8
finned-x-wing-in-rows: n8{r2 r7}{c5 c1} ==> r8c1≠8
biv-chain[3]: r3c7{n9 n7} - r3c3{n7 n8} - r7c3{n8 n9} ==> r7c7≠9
stte