biG-into-Grids

Post the puzzle or solving technique that's causing you trouble and someone will help

biG-into-Grids

Postby RichardGoodrich » Mon Jun 30, 2025 10:58 pm

biG wrote:Playing with Grids - From First to Last


Definitions
Hidden Text: Show
Code: Select all
TNSPF
  The New Sudoku Player's Forum > http://forum.enjoysudoku.com/

RefPOST
    A "text" format of Denis Berthier 4-Grid Board
    RichardGoodrich » 2025 Jun Wed 25, 2025 9:58 am
    http://forum.enjoysudoku.com/post353620.html#p353620

OEIS
    On-Line Encylopedia of Integer Sequences > https://oeis.org/
        founded in 1964 by Neil Sloane [1939.10.10 - ]
        Neil James Alexander Sloane born in Beasumaris, Wales
        British American Mathematician
        https://en.wikipedia.org/wiki/Neil_Sloane

delang
    The D Programming Language > https://dlang.org/
       allows underscore separator for numbers

ED
    Essentailly Different sudoku grids

ED# 
    5_472_730_538  = 1_4633_3DAA    in Hex

ED/2#
    2_736_365_269  =  A319_9ED5    in Hex

minlex
   minimal lexicographic order (dictionary order)

A114228
    Lexicographically earliest solution of any 9 X 9 sudoku, read by rows.
    https://oeis.org/A11428

A112454
   Lexicographically maximal solution of any 9 X 9 sudoku, read by rows.
   https://oeis.org/A112454


Grids
I copied the grids from my RefPOST (refer to my Defintions) into a text editor and edited them to create these grids.
Code: Select all
c1 = 1  2  3   4  5  6   7  8  9     c1 = 1  2  3   4  5  6   7  8  9
    .---------.---------.---------.     .---------.---------.---------.
 r1 | 1  2  3 | 4  5  6 | 7  8  9 |  r1 | 9  8  7 | 6  5  4 | 3  2  1 |
 r2 | 4  5  6 | 7  8  9 | 1  2  3 |  r2 | 6  5  4 | 3  2  1 | 9  8  7 |
 r3 | 7  8  9 | 1  2  3 | 4  5  6 |  r3 | 3  2  1 | 9  8  7 | 6  5  4 |
    :---------+---------+---------:     :---------+---------+---------:
 r4 | 2  1  4 | 3  6  5 | 8  9  7 |  r4 | 8  9  6 | 7  4  5 | 2  1  3 |
 r5 | 3  6  5 | 8  9  7 | 2  1  4 |  r5 | 7  4  5 | 2  1  3 | 8  9  6 |
 r6 | 8  9  7 | 2  1  4 | 3  6  5 |  r6 | 2  1  3 | 8  9  6 | 7  4  5 |
    :---------+---------+---------:     :---------+---------+---------:
 r7 | 5  3  1 | 6  4  2 | 9  7  8 |  r7 | 5  7  9 | 4  6  8 | 1  3  2 |
 r8 | 6  4  2 | 9  7  8 | 5  3  1 |  r8.| 4  6  8 | 1  3  2 | 5  7  9 |
 r9 | 9  7  8 | 5  3  1 | 6  4  2 |  r9 | 1  3  2 | 5  7  9 | 4  6  8 |
    '---------'---------'---------'     '---------'---------'---------'
    A114288  (first minlex)             A112454  (last minlex)
   
c1 = 1  2  3   4  5  6   7  8  9     c1 = 1  2  3   4  5  6   7  8  9
    .---------.---------.---------.     .---------.---------.---------.
 r1 |    2  3 |    5  6 |         |  r1 |         |         |         |
 r2 | 4  5  6 | 7  8  9 |         |  r2 |   B1    |   B2    |   B3    |
 r3 | 7  8  9 | 1  2  3 |         |  r3 |         |         |         |
    :---------+---------+---------:     :---------+---------+---------:
 r4 |    1  4 |         | 8  9  7 |  r4 |         |         |         |
 r5 | 3  6  5 |         | 2  1  4 |  r5 |   B4    |   B5    |   B6    |
 r6 | 8  9  7 |         | 3  6    |  r6 |         |         |         |
    :---------+---------+---------:     :---------+---------+---------:
 r7 |         | 6  4  2 | 9  7  8 |  r7 |         |         |         |
 r8 |         | 9  7  8 | 5  3  1 |  r8.|   B7    |   B8    |   B9    |
 r9 |         | 5  3    | 6  4    |  r9 |         |         |         |
    '---------'---------'---------'     '---------'---------'---------'
    "The 48"   (33 holes)                Block Numbering
   
    Alternative Block Numbering
    -------------------------------
    B1 = B1-11,  B2=B-12,   B3=B-13
    B4 = B4-21,  B5=B-22,   B6=B-23
    B5 = B7-31,  B8=B-32,   B9=B-33
   
c1 = 1  2  3   4  5  6   7  8  9     c1 = 1  2  3   4  5  6   7  8  9
    .---------.---------.---------.     .---------.---------.---------.
 r1 | 1  2  3 | 4  5  6 |         |  r1 | .  .  . | .  .  . | .  .  . |
 r2 | 4  5  6 | 7  8  9 |         |  r2 | .  .  . | .  .  . | .  .  . |
 r3 | 7  8  9 | 1  2  3 |         |  r3 | .  .  . | .  .  . | .  .  . |
    :---------+---------+---------:     :---------+---------+---------:
 r4 | 2  1  4 |         | 8  9  7 |  r4 | .  .  . | .  .  . | .  .  . |
 r5 | 3  6  5 |         | 2  1  4 |  r5 | .  .  . | .  ,  . | .  .  . |
 r6 | 8  9  7 |         | 3  6  5 |  r6 | .  .  . | .  .  . | .  .  . |
    :---------+---------+---------:     :---------+---------+---------:
 r7 |         | 6  4  2 | 9  7  8 |  r7 | .  .  . | .  .  . | .  .  . |
 r8 |         | 9  7  8 | 5  3  1 |  r8.| .  ,  . | .  .  . | .  .  . |
 r9 |         | 5  3  1 | 6  4  2 |  r9 | .  .  . | .  .  . | .  .  . |
    '---------'---------'---------'     '---------'---------'---------'
    "The 54"  (27 holes)                 Next?

My idea was to demonstrate the 48-char compression with a specific example. Start with the minimum minlex grid. Since we are documenting, lets draw the maximal minlex grid beside it. Observe as we go.

The first thing I notice is that the first grid A114288 could be transformed into that last grid A112454 in a modulo-10 sense. E.G. iterating into the values of the fisrt grid: subtract the value from 10 and that was the value for the last grid. Made me go "hmmm..." Seems like there is a symmetry here. Could I just "calculate" the first ED/2# grids and generate the last half by applying modulo-10 operations. My gut - feeling says the last half of the ED is geneated from the end to the middle. What say you?

Then in the process of decompressing The 48 grid by doing a "full house" on six blocks produces The 54" grid. Of course by experience I "know" the grid can be solved from there to the full 81-char puzzle. However, I was still wanting to see this visually in some way. It made me think of that so-called SET (Set Equivalence Theory) method again! Where do I go now?
Big1952
RichardGoodrich
 
Posts: 109
Joined: 12 December 2012
Location: Josephine, TX (north of Dallas, TX)

Return to Help with puzzles and solving techniques