ronk wrote:Of course, the argument works just as well with the swordfish in r359c124.
Here I'm not following you ronk. Can you explain?
Havard
Havard wrote:ronk wrote:Of course, the argument works just as well with the swordfish in r359c124.
Here I'm not following you ronk. Can you explain?
Squirmbag in columns: 1 2 5 6 8
139X 3459X 1359 | 6 7 12 | 249 8 349
13789X 3479X 6 | 48 89X 12 | 5 279X 3479
789X 2 79- | 458 589X 3 | 479 6 1
---------------------+----------------------+---------------------
369X 1 4 | 38 368 7 | 689 5 2
679X 679X 8 | 1 2 5 | 3 4 679
2 3567 357 | 9 368 4 | 1678 17 678
---------------------+----------------------+---------------------
13679X 3679X 2 | 357 35 89X | 468 179X 4568
5 8 179 | 27 4 6 | 1279 3 79
4 3679X 379 | 2357 1 89X | 68 279X 568
9X 9X 9 | . . . | 9 . 9
9X 9X . | . 9X . | . 9X 9
9X . 9- | . 9X . | 9 . .
---------+----------+---------
9X . . | . . . | 9 . .
9X 9X . | . . . | . . 9
. . . | 9 . . | . . .
---------+----------+---------
9X 9X . | . . 9X | . 9X .
. . 9 | . . . | 9 . 9
. 9X 9 | . . 9X | . 9X .
.------------------.------------------.------------------.
| 139 3459 1359 | 6 7 12 | 249 8 349 |
| 13789 3479 6 | 48 89 12 | 5 279 3479 |
| 789 2 79 | 458 589 3 | 479 6 1 |
:------------------+------------------+------------------:
| 369 1 4 | 38 368 7 | 689 5 2 |
| 679 679 8 | 1 2 5 | 3 4 679 |
| 2 3567 357 | 9 368 4 | 1678 *17 678 |
:------------------+------------------+------------------:
| 13679 3679 2 | 357 35 89 | 468 -179 4568 |
| 5 8 179 | 27 4 6 | 1279 3 *79 |
| 4 3679 379 | 2357 1 89 | 68 *279 568 |
'------------------'------------------'------------------'
Havard wrote:3: Does he have a smaller complimentary fish, and if not is the rule of jellyfish being the biggest fish in the pond under threat?
9 9 9 | . . . | 9 . 9
9 9 . | . A . | . b 9
9 . -9 | . a . | 9 . .
----------+-----------+----------
9 . . | . . . | 9 . .
9 9 . | . . . | . . 9
. . . | 9 . . | . . .
----------+-----------+----------
9 9 . | . . 9 | . B .
. . B | . . . | b . b
. 9 9 | . . 9 | . B .
. . 3 | 6 . . | . 9 7
1 . . | . 9 . | 6 2 3
6 9 . | 2 7 3 | 1 . 5
------+-------+------
3 . 6 | . . . | 7 . 9
. 5 . | . 3 9 | . 6 .
4 . 9 | . . 6 | 3 . .
------+-------+------
9 3 1 | . . 8 | . 7 6
7 4 . | 3 6 . | 9 . .
. 6 . | 9 . 7 | . 3 .
Mr. Nishio says we can eliminate in R5C34 and R46C8... (marked with -)
8 8 . | . 8 . | 8 . .
. 8 8 | 8 . . | . . .
. . 8 | . . . | . 8 .
------+-------+------
. 8 . | 8 8 . | .-8 .
8 .-8 |-8 . . | 8 . 8
. 8 . | 8 8 . | .-8 8
------+-------+------
. . . | . . 8 | . . .
. . 8 | . . . | . 8 8
8 . 8 | . . . | 8 . 8
Cannibalistic Franken-Jellyfish in columns: 1 4 5 7
258X 28 3 | 6 1458X 14 | 48X 9 7
1 78 4578 | 58X 9 45 | 6 2 3
6 9 48 | 2 7 3 | 1 48 5
---------------------+----------------------+---------------------
3 128 6 | 1458X 2458X 245 | 7 1458 9
28X 5 278 | 1478X- 3 9 | 248X 6 1248
4 1278 9 | 1578X 258X 6 | 3 158 128
---------------------+----------------------+---------------------
9 3 1 | 45 245 8 | 245 7 6
7 4 258 | 3 6 125 | 9 18 128
258X 6 258 | 9 1245 7 | 2458X 3 1248
8X 8 . | . 8X . | 8X . .
. 8 8 | 8X . . | . . .
. . 8 | . . . | . 8 .
------------+-------------+------------
. 8 . | 8X 8X . | . 8 .
8X . 8 | 8X- . . | 8X . 8
. 8 . | 8X 8X . | . 8 8
------------+-------------+------------
. . . | . . 8 | . . .
. . 8 | . . . | . 8 8
8X . 8 | . . . | 8X . 8
Franken-Jellyfish in rows: 3 5 8 9
258 28 3 | 6 1458 14 | 48 9 7
1 78 4578 | 58 9 45 | 6 2 3
6 9 48X | 2 7 3 | 1 48X 5
------------------+-------------------+------------------
3 128 6 | 1458 2458 245 | 7 1458- 9
28X 5 278X | 147 3 9 | 248X 6 1248X
4 1278 9 | 1578 258 6 | 3 158- 128
------------------+-------------------+------------------
9 3 1 | 45 245 8 | 245 7 6
7 4 258X | 3 6 125 | 9 18X 128X
258X 6 258X | 9 1245 7 | 2458X 3 1248X
8 8 . | . 8 . | 8 . .
. 8 8 | 8 . . | . . .
. . 8X | . . . | . 8X .
---------+----------+---------
. 8 . | 8 8 . | . 8- .
8X . 8X | . . . | 8X . 8X
. 8 . | 8 8 . | . 8- 8
---------+----------+---------
. . . | . . 8 | . . .
. . 8X | . . . | . 8X 8X
8X . 8X | . . . | 8X . 8X
Franken-Squirmbag in columns: 1 2 4 5 7
258X 28X 3 | 6 1458X 14 | 48X 9 7
1 78X 4578 | 58X 9 45 | 6 2 3
6 9 48 | 2 7 3 | 1 48 5
------------------+-------------------+------------------
3 128X 6 | 1458X 2458X 245 | 7 145 9
28X 5 278- | 147 3 9 | 248X 6 1248
4 1278X 9 | 1578X 258X 6 | 3 15 128
------------------+-------------------+------------------
9 3 1 | 45 245 8 | 245 7 6
7 4 258 | 3 6 125 | 9 18 128
258X 6 258 | 9 1245 7 | 2458X 3 1248
8X 8X . | . 8X . | 8X . .
. 8X 8 | 8X . . | . . .
. . 8 | . . . | . 8 .
---------+----------+---------
. 8X . | 8X 8X . | . . .
8X . 8- | . . . | 8X . 8
. 8X . | 8X 8X . | . . 8
---------+----------+---------
. . . | . . 8 | . . .
. . 8 | . . . | . 8 8
8X . 8 | . . . | 8X . 8
. . . | . . . | # # .
. . . | . . . | # # .
. . . | . . . | # # .
------+--------+-|--|---
. . . | . X# . | | | *
. . . | * | * | X# X# .
. . . | . | . | | | .
------+---|----+-|--|---
. . . | . | . | | | .
. . . | . | . | | | .
. . . | . X . | X X .
Mike Barker wrote:This may have already come up (its been a while since I've gone through the posts), but in starting to thing about coding up big fish I came across this schitzophrenic fish. Can't quite seem to figure out which is its body and which is its fin. Nothing big, just a little more fun
- Code: Select all
. . . | . . . | # # .
. . . | . . . | # # .
. . . | . . . | # # .
------+--------+-|--|---
. . . | . X# . | | | *
. . . | * | * | X# X# .
. . . | . | . | | | .
------+---|----+-|--|---
. . . | . | . | | | .
. . . | . | . | | | .
. . . | . X . | X X .
. . . | . . . | X X *
. . . | . . . | X X *
. . . | . . . | X X *
-------+-------+-|-|---
. . . | . . . | | | .
* * * | * X * | X X *
. . . | . | . | | | .
-------+---|---+-|-|---
. . . | . | . | | | .
. . . | . | . | | | .
* * * | * X * | X X *
Fig. 1 (no extra candidates)
. . . | . . . | X X .
. . . | . . . | X X .
. . . | . . . | X X .
-------+-------+-|-|---
. . . | . . . | | | .
. . . | . X . | X X .
. . . | . | . | | | .
-------+---|---+-|-|---
. . . | . | . | # # *
. . . | . | . | # # *
. . . | . X . | X X *
Fig. 2 (if an extra candidate '#' is ultimately true)
. . . | . . . | X X .
. . . | . . . | X X .
. . . | . . . | X X .
-------+-------+-|-|---
. . . | . . . | | | .
. . . | . X . | X X .
. . . | . | . | | | .
-------+---|---+-|-|---
. . . | . | . | # # .
. . . | . | . | # # .
. . . | . X . | X X *
Fig. 3 (whether or not an extra candidate '#' is ultimately true)
. . . | . . . | X X .
. . . | . . . | X X .
. . . | . . . | X X .
-------+-------+-|-|---
. . . | . # . | | | .
. . . | * X * | X X .
. . . | . # . | | | .
-------+---|---+-|-|---
. . . | . | . | | | .
. . . | . | . | | | .
. . . | . X . | X X .
Fig. 4
Franken Swordfish
. . . | * X * | X X *
. . . | * X * | X X *
. . . | * X * | X X *
-------+-------+-|-|---
. . . | . . . | | | *
* * * | * . * | X X *
. . . | . . . | . . *
-------+-------+-------
. . . | . . . | . . .
. . . | . . . | . . .
. . . | . . . | . . .
which is easy to show based on contraint sets {C5, C7, C8} are covered by {B2, B3, R5} or {B2, B3, B6}
Franken Jellyfish
. . . | * X X | X X *
. . . | * X X | X X *
. . . | * X X | X X *
-------+---|-|-+-|-|---
. . . | . | | | | | .
* * * | * X X | X X *
. . . | . | | | | | .
-------+---|-|-+-|-|---
. . . | . | | | | | .
. . . | . | | | | | .
* * * | * X X | X X *
which is again easy to show based on contraint sets {C5, C6, C7, C8} are covered by {B2, B3, R5, R9}
Franken Jellyfish
. . . | . . . | X X *
* X * | * X * | X X *
. | . | . | . | X X *
---|---+---|---+-|-|---
. | . | . | . | | | .
* X * | * X * | X X *
. | . | . | . | | | .
---|---+---|---+-|-|---
. | . | . | . | | | .
. | . | . | . | | | .
* X * | * X * | X X *
let me try almost constraint sets. if the digit is in r2c2, then the remaining elements of the fish {C5, C7, C8} can be covered by {B3, R5, R9}. if the digit is not in r2c2 then the remaining elements of the fish {C2, C5, C7, C8} can be covered by {B2, B3, R5, R9}. In either case the eliminations as shown are possible.
Franken Jellyfish
. . . | . # . | X X .
. X . | * X * | X X .
. | . | . # . | X X .
---|---+---|---+-|-|---
. | . | . | . | | | .
. X . | . X . | X X .
. | . | . | . | | | .
---|---+---|---+-|-|---
. | . | . | . | | | .
. | . | . | . | | | .
. X . | . X . | X X .
again with almost constraint sets if a fin element contains the digit then the eliminations can be made. If not then we have the previous situation and the two eliminations can still be made.
+------------------+------------------+-------------------+
| *258 28 3 | 6 *1458 14 | *48 9 7 |
| 1 78 4578 | 58 9 45 | 6 2 3 |
| 6 9 48 | 2 7 3 | 1 48 5 |
+------------------+------------------+-------------------+
| 3 128 6 | 1458 *2458 245 | 7 1458 9 |
| *28 5 278 | -1478 3 9 | *248 6 1248 |
| 4 1278 9 | 1578 *258 6 | 3 158 128 |
+------------------+------------------+-------------------+
| 9 3 1 | 45 245 8 | 245 7 6 |
| 7 4 258 | 3 6 125 | 9 18 128 |
| *258 6 258 | 9 1245 7 | *2458 3 1248 |
+------------------+------------------+-------------------+
+------------------+------------------+------------------+
| 258 28 3 | 6 1458 14 | 48 9 7 |
| 1 78 4578 | 58 9 45 | 6 2 3 |
| 6 9 48 | 2 7 3 | 1 48 5 |
+------------------+------------------+------------------+
| 3 128 6 | 1458 2458 245 | 7 *145 9 |
| #28 5 -278 | 147 3 9 | *248 6 *1248 |
| 4 1278 9 | 1578 258 6 | 3 *15 128 |
+------------------+------------------+------------------+
| 9 3 1 | 45 245 8 | 245 7 6 |
| 7 4 258 | 3 6 125 | 9 18 128 |
| 258 6 258 | 9 1245 7 | 2458 3 1248 |
+------------------+------------------+------------------+
Mike Barker wrote:
- Code: Select all
Franken Jellyfish
. . . | . . . | X X *
* X * | * X * | X X *
. | . | . | . | X X *
---|---+---|---+-|-|---
. | . | . | . | | | .
* X * | * X * | X X *
. | . | . | . | | | .
---|---+---|---+-|-|---
. | . | . | . | | | .
. | . | . | . | | | .
* X * | * X * | X X *
let me try almost constraint sets. if the digit is in r2c2, then the remaining elements of the fish {C5, C7, C8} can be covered by {B3, R5, R9}. if the digit is not in r2c2 then the remaining elements of the fish {C2, C5, C7, C8} can be covered by {B2, B3, R5, R9}. In either case the eliminations as shown are possible.
Mike Barker wrote:
- Code: Select all
Franken Jellyfish
. . . | . # . | X X .
. X . | * X * | X X .
. | . | . # . | X X .
---|---+---|---+-|-|---
. | . | . | . | | | .
. X . | . X . | X X .
. | . | . | . | | | .
---|---+---|---+-|-|---
. | . | . | . | | | .
. | . | . | . | | | .
. X . | . X . | X X .
again with almost constraint sets if a fin element contains the digit then the eliminations can be made. If not then we have the previous situation and the two eliminations can still be made.
Mike Barker wrote:Ron, thanks for the demonstration of almost constraint sets. When I first looked at constraint sets based on your suggestion here, I felt in my heart that they should be applicable to Frankenfish, but didn't know how. Your demonstration of almost constraint sets was great.
Mike Barker wrote:
- Code: Select all
Franken Jellyfish
. . . | . . . | X X *
* X * | * X * | *X *X *
. | . | . | . | X X *
---|---+---|---+--|--|---
. | . | . | . | | | .
* X * | * X * | X X *
. | . | . | . | | | .
---|---+---|---+--|--|---
. | . | . | . | | | .
. | . | . | . | | | .
* X * | * X * | X X *
Franken Jellyfish ???
. * . | . * . | X X (.)
. X---|---X . |(.)(.)(.)
. * . | . * . | X X (.)
-------+-------+---------
. * . | . * . | * * .
. X---|---X---|-X--X .
. * . | . * . | * * .
-------+-------+---------
. * . | . * . | * * .
. * . | . * . | * * .
. X---|---X---|-X--X .
cells of box 3 are also be part of the fish
. * . | . * . | X X .
---X---|---X---|-------
. * . | . * . | X X .
-------+-------+-------
. * . | . * . | * * .
---X---|---X---|-X-X---
. * . | . * . | * * .
-------+-------+-------
. * . | . * . | * * .
. * . | . * . | * * .
---X---|---X---|-X-X---
Mike Barker wrote:that is only true if r13c9 do not contain the digit (note by construction r2c789 do not).
. * . | . * . | X X -
- X - | - X - | - - -
. * . | . * . | X X -
-------+-------+---------
. * . | . * . | * * .
- X - | - X - | X X -
. * . | . * . | * * .
-------+-------+---------
. * . | . * . | * * .
. * . | . * . | * * .
- X - | - X - | X X -
'-' indicates cells void of candidate X
'*' indicates cells for potential candidate X exclusions
Mike Barker wrote:it looks at first that A={R2, R5, R8, B3} is covered by B={C2, C5, C7, C8}