The first puzzle may be solved (ste finish) by a sequence of 5 X-Wings
- Code: Select all
+--------------------------+------------------------+---------------------+
| 45678 1567-4 1256-8 | 257-4 256-8 4678 | 9 13 1367 |
| 3 467# 68* | 479# 689* 1 | 5 2 67 |
| 567 9 1256 | 257 3 67 | 4 8 167 |
+--------------------------+------------------------+---------------------+
| 79^ 8 13-9 | 1237-9 4 379^ | 123 6 5 |
| 2 1367 1369 | 1379 169 5 | 8 4 13 |
| 56 1356 4 | 8 126 36 | 123 7 9 |
+--------------------------+------------------------+---------------------+
| 45 2 7 | 135-4 15 34 | 6 9 8 |
| 1 35 89* | 6 89* 2 | 7 35 4 |
| (456)89^ 3456# 356-89 | 45-9# 7 (4)89^ | 13 135 2 |
+--------------------------+------------------------+---------------------+
XW(8)r28\c35 => -8 r19c3, r1c5
XW(9)c16\r49 => -9 r49c34; HP(89)r9c16
XW(4)r29\c24 => -4r1c2, r17c4; HP(48)r1c16, HT(489)b2p345; NP(89)r28c5
- Code: Select all
+----------------------+---------------------+---------------------+
| 48 1567 1256 | 257 256 48 | 9 13 1367 |
| 3 467 68 | 49 89 1 | 5 2 67 |
| 567*^ 9 125-6 | 25-7 3 67*^ | 4 8 1-67 |
+----------------------+---------------------+---------------------+
| 79^ 8 13 | 123-7 4 379^ | 123 6 5 |
| 2 1367 1369 | 1379 16 5 | 8 4 13 |
| 56* 135-6 4 | 8 12-6 36* | 123 7 9 |
+----------------------+---------------------+---------------------+
| 45 2 7 | 135 15 34 | 6 9 8 |
| 1 35 89 | 6 89 2 | 7 35 4 |
| 89 3456 356 | 45 7 89 | 13 135 2 |
+----------------------+---------------------+---------------------+
XW(6)c16\r36 => -6 r3c39, r6c25
XW(7)c16\r34 => -7 r3c49, r4c4; ste
Phil's one-step loop has a pattern name: XY-Ring
The second puzzle (w/o 6r8c4 as a given) may be solved (ste finish) by the same sequence of 5 X-Wings, with slightly different eliminations and subsets:
- Code: Select all
+--------------------------+------------------------+---------------------+
| 45678 14567 1256-8 | 24567 256-8 4678 | 9 13 1367 |
| 3 467 68* | 4679 689* 1 | 5 2 67 |
| 567 9 1256 | 2567 3 67 | 4 8 167 |
+--------------------------+------------------------+---------------------+
| 79^ 8 13-9 | 1237-9 4 379^ | 123 6 5 |
| 2 1367 1369 | 13679 169 5 | 8 4 13 |
| 56 1356 4 | 8 126 36 | 123 7 9 |
+--------------------------+------------------------+---------------------+
| 45 2 7 | 1345 15 34 | 6 9 8 |
| 1 356 35689* | 569 5689* 2 | 7 35 4 |
| 45689^ 3456 356-89 | 456-9 7 4689^ | 13 135 2 |
+--------------------------+------------------------+---------------------+
XW(8)r28\c35 => -8 r19c3, r1c5
XW(9)c16\r49 => -9 r49c34; HP(89)r9c16, HP(89)b7p67
- Code: Select all
+-------------------------+------------------------+---------------------+
| 45678 1567-4 1256 | 2567-4 256 4678 | 9 13 1367 |
| 3 467* 68 | 4679* 689 1 | 5 2 67 |
| 567 9 1256 | 2567 3 67 | 4 8 167 |
+-------------------------+------------------------+---------------------+
| 79 8 13 | 1237 4 379 | 123 6 5 |
| 2 1367 1369 | 13679 169 5 | 8 4 13 |
| 56 1356 4 | 8 126 36 | 123 7 9 |
+-------------------------+------------------------+---------------------+
| 45 2 7 | 135-4 15 34 | 6 9 8 |
| 1 356 89 | 569 5689 2 | 7 35 4 |
| 89 3456* 356 | 456* 7 89 | 13 135 2 |
+-------------------------+------------------------+---------------------+
XW(4)r29\c24 => -4r1c2, r17c4; HP(48)r1c16, HT(489)b2p345
- Code: Select all
+----------------------+-----------------------+---------------------+
| 48 1567 1256 | 2567 256 48 | 9 13 1367 |
| 3 467 68 | 49 89 1 | 5 2 67 |
| 567*^ 9 125-6 | 25-67 3 67*^ | 4 8 1-67 |
+----------------------+-----------------------+---------------------+
| 79^ 8 13 | 123-7 4 379^ | 123 6 5 |
| 2 1367 1369 | 13679 169 5 | 8 4 13 |
| 56* 135-6 4 | 8 12-6 36* | 123 7 9 |
+----------------------+-----------------------+---------------------+
| 45 2 7 | 135 15 34 | 6 9 8 |
| 1 356 89 | 569 5689 2 | 7 35 4 |
| 89 3456 356 | 456 7 89 | 13 135 2 |
+----------------------+-----------------------+---------------------+
XW(6)c16\r36 => -6 r3c39, r6c25
XW(7)c16\r34 => -7 r3c49, r4c4; ste
The XY-Ring still exists, but needs an additional AIC:
- Code: Select all
+----------------------+------------------------+-----------------+
| b4678 15 125 | 24567 2568 4678 | 9 3 67 |
| 3 c467 68 | 4679 689 1 | 5 2 67 |
| 67 9 25 | 25 3 67 | 4 8 1 |
+----------------------+------------------------+-----------------+
| e79 8 13 | 123 4 79 | 12 6 5 |
| 2 d167 169 | 1679 169 5 | 8 4 3 |
| 56 35 4 | 8 12 36 | 12 7 9 |
+----------------------+------------------------+-----------------+
| 45 2 7 | 135 15 34 | 6 9 8 |
| 1 36 3689 | 69 689 2 | 7 5 4 |
| a468-9 456 5689 | 4569 7 4689 | 3 1 2 |
+----------------------+------------------------+-----------------+
2. (8)r9c1 = r1c1 - (8=6)r2c3 - (6=7)r3c1 - (7=9)r4c1 => -9 r9c1; ste
One-step with a kraken cell, using the same cells:
- Code: Select all
+--------------------------+------------------------+---------------------+
| 45678 14567 12568 | 24567 2568 4678 | 9 13 1367 |
| 3 467 68 | 4679 689 1 | 5 2 67 |
| 567 9 1256 | 2567 3 67 | 4 8 167 |
+--------------------------+------------------------+---------------------+
| 79 8 139 | 12379 4 379 | 123 6 5 |
| 2 1367 1369 | 13679 169 5 | 8 4 13 |
| 56 1356 4 | 8 126 36 | 123 7 9 |
+--------------------------+------------------------+---------------------+
| 45 2 7 | 1345 15 34 | 6 9 8 |
| 1 356 35689 | 569 5689 2 | 7 35 4 |
| 45689 3456 35689 | 4569 7 4689 | 13 135 2 |
+--------------------------+------------------------+---------------------+
Kraken cell (567)r3c1
(5)r3c1-(5=6)r6c1-(6=3)r6c6-(3=4)r7c6-r7c1=(48)r19c1
(6)r3c1-(6=8)r2c3-r1c1=(8)r9c1
(7)r3c1-(7=9)r4c1
=> -9 r9c1; ste
The third puzzle (w/o 2r8c6 as a given) is solved by a sequence of four simple AICs:
- Code: Select all
+--------------------------+-------------------------+---------------------+
| 45678 14567 12568 | 2457 2568 24678 | 9 13 1367 |
| 3 467 68 | 479 689 1 | 5 2 67 |
| 567 9 1256 | 257 3 267 | 4 8 167 |
+--------------------------+-------------------------+---------------------+
| 79 8 139 | 12379 4 2379 | 123 6 5 |
| 2 1367 1369 | 1379 169 5 | 8 4 13 |
| 56 1356 4 | 8 126 236 | 123 7 9 |
+--------------------------+-------------------------+---------------------+
| 45 2 7 | 1345 15 34 | 6 9 8 |
| 1 35 89 | 6 289 289 | 7 35 4 |
| 45689 3456 35689 | 459 7 489 | 13 135 2 |
+--------------------------+-------------------------+---------------------+
1. (5)r9c3 = (5-21)r13c3 = r1c2 - r1c8 = (1)r9c8 => -5 r9c8
- Code: Select all
+--------------------------+-------------------------+--------------------+
| 45678 14567 12568 | 2457 2568 24678 | 9 13 1367 |
| 3 467 68 | 479 689 1 | 5 2 67 |
| 567 9 1256 | 257 3 267 | 4 8 167 |
+--------------------------+-------------------------+--------------------+
| 79 8 139 | 12379 4 2379 | 123 6 5 |
| 2 167 1369 | 1379 169 5 | 8 4 13 |
| 56 156 4 | 8 126 236 | 123 7 9 |
+--------------------------+-------------------------+--------------------+
| 45 2 7 | 1345 15 34 | 6 9 8 |
| 1 3 89 | 6 289 289 | 7 5 4 |
| 45689 456 5689 | 459 7 489 | 13 13 2 |
+--------------------------+-------------------------+--------------------+
2. (1)r3c3 = r3c9 - (1=3)r1c8 - r1c9 = r5c9 - r5c3 = (3)r4c3 => -1 r4c3
3. (1)r4c4 = (1-2)r4c7 = (2-3)r6c7 = r6c6 - r7c6 = (3)r7c4 => -1 r7c4
- Code: Select all
+------------------------+------------------------+--------------------+
| 4678 1467 1268 | 247 5 24678 | 9 13 1367 |
| 3 467 68 | 479 689 1 | 5 2 67 |
| 567 9 1256 | 27 3 267 | 4 8 167 |
+------------------------+------------------------+--------------------+
| 79 8 39 | 12379 4 2379 | 123 6 5 |
| 2 167 1369 | 1379 69 5 | 8 4 13 |
| 56 156 4 | 8 26 236 | 123 7 9 |
+------------------------+------------------------+--------------------+
| 45 2 7 | 345 1 34 | 6 9 8 |
| 1 3 89 | 6 289 289 | 7 5 4 |
| 45689 456 5689 | 459 7 489 | 13 13 2 |
+------------------------+------------------------+--------------------+
4. (1)r1c2 = (1-25)r13c3 = r3c1 - r6c1 = (5)r6c2 => -1 r6c2; ste
ADDED: one step-solution,
- Code: Select all
+--------------------------+-------------------------+---------------------+
| 45678 zd14567 12568 | 2457 v2568 24678 | 9 3-1 d1367 |
| 3 467 68 | 479 689 1 | 5 2 67 |
| a567 9 A1256 | u257 3 267 | 4 8 Bd167 |
+--------------------------+-------------------------+---------------------+
| 79 8 z139 | y12379 4 2379 | z123 6 5 |
| 2 zd1367 1369 | 1379 169 5 | 8 4 d13 |
| b56 zc1356 4 | 8 126 236 | 123 7 9 |
+--------------------------+-------------------------+---------------------+
| 45 2 7 | x1345 w15 34 | 6 9 8 |
| 1 35 89 | 6 289 289 | 7 35 4 |
| 45689 3456 35689 | 459 7 489 | z13 z135 2 |
+--------------------------+-------------------------+---------------------+
Kraken row (5)r3c134
(5)r3c1 - r6c1 = (5-1)r6c2 = [r1c2*=*r5c2 - r5c9 = r13c9]
(5-1)r3c3 = (1)r3c9
(5)r3c4 - r1c5 = (5-1)r7c5 = r7c4 - r4c4 = [r1c2 = r56c2 - r4c3*=*r4c7 - r9c7 = r9c8]
=> -1 r1c8; ste