- Code: Select all
---------+-------------------------------+------------------------
| |
9 X X | X X X | X X X
| |
X X X | X 1* 2* | [34][24] [34][13] X
| |
X X X | X 3* 4* | [12][24] [12][13] X
| |
---------+-------------------------------+------------------------
| |
X X X | X [24][34] [13][34] | *1 *2 X
| |
X X X | X [24][12] [13][12] | *3 *4 X
| |
X 9 X | X X X | X X X
| |
---------+-------------------------------+------------------------
| |
X X 9 | X X X | X X X
| |
X X X | 9 X X | X X X
| |
X X X | X X X | X X 9
| |
---------+-------------------------------+------------------------
Of course, once you've reduced the number of possible solutions to something manageable, you could substitute these digit labels for letters or any other unique symbols, giving the more familiar...
- Code: Select all
9abcd 9efgh | 9jlnp 9ikmo
|
9ijkl 9mnop | 9bdfh 9aceg
--------------+------------------
9ghop 9cdkl | 9aeim 9bfjn
|
9efmn 9abij | 9cgko 9dhlp
Now lets expand this to a 6-cell pattern. You would get something like this if you solved for a digit in boxes 1, 5, and 9. Now you have 64 different ways to finish up the solution for that digit, which is nicely represented by a label containing 3 digits that can range from 1 to 4. Lets say the solved cells were in r1c1, r4c4, and r7c7. In that case, pattern 111 would be in r2c5, r3c9, r5c8, r6c3, r8c2, and r9c6. Cell r2c5 contains all sixteen patterns that have a 1 as the first digit.
- Code: Select all
-----------------------+------------------------+------------------------
| |
| |
| 1** 2** | [34][24]* [34][13]*
| |
| 3** 4** | [12][24]* [12][13]*
| |
-----------------------+------------------------+------------------------
| |
| |
*[34][24] *[34][13] | | *1* *2*
| |
*[12][24] *[12][13] | | *3* *4*
| |
-----------------------+------------------------+------------------------
| |
| |
**1 **2 | [24]*[34] [13]*[34] |
| |
**3 **4 | [24]*[12] [13]*[12] |
| |
-----------------------+------------------------+------------------------
So this gives us an arrangement for any arbitrary solution given in boxes 1, 5, and 9. Now I am going to show how one can create a POM grid in a non-assumptive fashion by using a magic starting pattern for all nine cells of a standard sudoku grid. For the 9x9 grid, each solution pattern label has six digits. The first three digits range from 1 to 9 and correspond to the solution cell for the pattern in boxes 1, 5, and 9 respectively. The second three digits range from 1 to 4 and correspond to the solutions in boxes 2, 6, and 7 respectively; with a 1 representing the cell that is cyclically to right and below the intersection of the solutions from boxes 1, 5, and 9. The solutions in the remaining boxes, 3, 4, and 8, follow uniquely from the solutions in the other boxes, following a similar format to that of the 6-cell case. Just as with the other cases, you can tell from the label which cells contain that label. For example, pattern 138124 lies in cells r1c1, r4c6, r9c8, r2c4, r5c7, r8c3, r3c9, r6c2, and r7c5. I imagine this sounds a bit complex, but it might be easier to digest if you see the full set. The complete set of 46,656 solution patterns for an empty grid are shown below.
- Code: Select all
Block 1:
----------------------+----------------------+---------------------
| |
1***** |2***** |3*****
| |
----------------------+----------------------+---------------------
| |
4***** |5***** |6*****
| |
----------------------+----------------------+---------------------
| |
7***** |8***** |9*****
| |
----------------------+----------------------+---------------------
Block 2:
----------------------+----------------------+---------------------
| |
[789][369]*1**+ |[789][147]*1**+ |[789][258]*1**+
[789][258]*2**+ |[789][369]*2**+ |[789][147]*2**+
[456][369]*3**+ |[456][147]*3**+ |[456][258]*3**+
[456][258]*4** |[456][369]*4** |[456][147]*4**
| |
----------------------+----------------------+---------------------
| |
[123][369]*1**+ |[123][147]*1**+ |[123][258]*1**+
[123][258]*2**+ |[123][369]*2**+ |[123][147]*2**+
[789][369]*3**+ |[789][147]*3**+ |[789][258]*3**+
[789][258]*4** |[789][369]*4** |[789][147]*4**
| |
----------------------+----------------------+---------------------
| |
[456][369]*1**+ |[456][147]*1**+ |[456][258]*1**+
[456][258]*2**+ |[456][369]*2**+ |[456][147]*2**+
[123][369]*3**+ |[123][147]*3**+ |[123][258]*3**+
[123][258]*4** |[123][369]*4** |[123][147]*4**
| |
----------------------+----------------------+---------------------
Block 3:
----------------------+----------------------+---------------------
| |
[789]*[369][34][24]*+ |[789]*[147][34][24]*+ |[789]*[258][34][24]*+
[789]*[258][34][13]*+ |[789]*[369][34][13]*+ |[789]*[147][34][13]*+
[456]*[369][12][24]*+ |[456]*[147][12][24]*+ |[456]*[258][12][24]*+
[456]*[258][12][13]* |[456]*[369][12][13]* |[456]*[147][12][13]*
| |
----------------------+----------------------+---------------------
| |
[123]*[369][34][24]*+ |[123]*[147][34][24]*+ |[123]*[258][34][24]*+
[123]*[258][34][13]*+ |[123]*[369][34][13]*+ |[123]*[147][34][13]*+
[789]*[369][12][24]*+ |[789]*[147][12][24]*+ |[789]*[258][12][24]*+
[789]*[258][12][13]* |[789]*[369][12][13]* |[789]*[147][12][13]*
| |
----------------------+----------------------+---------------------
| |
[456]*[369][34][24]*+ |[456]*[147][34][24]*+ |[456]*[258][34][24]*+
[456]*[258][34][13]*+ |[456]*[369][34][13]*+ |[456]*[147][34][13]*+
[123]*[369][12][24]*+ |[123]*[147][12][24]*+ |[123]*[258][12][24]*+
[123]*[258][12][13]* |[123]*[369][12][13]* |[123]*[147][12][13]*
| |
----------------------+----------------------+---------------------
Block 4:
----------------------+----------------------+---------------------
| |
[369][789]**[34][24]+ |[147][789]**[34][24]+ |[258][789]**[34][24]+
[258][789]**[34][13]+ |[369][789]**[34][13]+ |[147][789]**[34][13]+
[369][456]**[12][24]+ |[147][456]**[12][24]+ |[258][456]**[12][24]+
[258][456]**[12][13] |[369][456]**[12][13] |[147][456]**[12][13]
| |
----------------------+----------------------+---------------------
| |
[369][123]**[34][24]+ |[147][123]**[34][24]+ |[258][123]**[34][24]+
[258][123]**[34][13]+ |[369][123]**[34][13]+ |[147][123]**[34][13]+
[369][789]**[12][24]+ |[147][789]**[12][24]+ |[258][789]**[12][24]+
[258][789]**[12][13] |[369][789]**[12][13] |[147][789]**[12][13]
| |
----------------------+----------------------+---------------------
| |
[369][456]**[34][24]+ |[147][456]**[34][24]+ |[258][456]**[34][24]+
[258][456]**[34][13]+ |[369][456]**[34][13]+ |[147][456]**[34][13]+
[369][123]**[12][24]+ |[147][123]**[12][24]+ |[258][123]**[12][24]+
[258][123]**[12][13] |[369][123]**[12][13] |[147][123]**[12][13]
| |
----------------------+----------------------+---------------------
Block 5:
----------------------+----------------------+---------------------
| |
*1**** |*2**** |*3****
| |
----------------------+----------------------+---------------------
| |
*4**** |*5**** |*6****
| |
----------------------+----------------------+---------------------
| |
*7**** |*8**** |*9****
| |
----------------------+----------------------+---------------------
Block 6:
----------------------+----------------------+---------------------
| |
*[789][369]*1*+ |*[789][147]*1*+ |*[789][258]*1*+
*[789][258]*2*+ |*[789][369]*2*+ |*[789][147]*2*+
*[456][369]*3*+ |*[456][147]*3*+ |*[456][258]*3*+
*[456][258]*4* |*[456][369]*4* |*[456][147]*4*
| |
----------------------+----------------------+---------------------
| |
*[123][369]*1*+ |*[123][147]*1*+ |*[123][258]*1*+
*[123][258]*2*+ |*[123][369]*2*+ |*[123][147]*2*+
*[789][369]*3*+ |*[789][147]*3*+ |*[789][258]*3*+
*[789][258]*4* |*[789][369]*4* |*[789][147]*4*
| |
----------------------+----------------------+---------------------
| |
*[456][369]*1*+ |*[456][147]*1*+ |*[456][258]*1*+
*[456][258]*2*+ |*[456][369]*2*+ |*[456][147]*2*+
*[123][369]*3*+ |*[123][147]*3*+ |*[123][258]*3*+
*[123][258]*4* |*[123][369]*4* |*[123][147]*4*
| |
----------------------+----------------------+---------------------
Block 7:
----------------------+----------------------+---------------------
| |
[369]*[789]**1+ |[147]*[789]**1+ |[258]*[789]**1+
[258]*[789]**2+ |[369]*[789]**2+ |[147]*[789]**2+
[369]*[456]**3+ |[147]*[456]**3+ |[258]*[456]**3+
[258]*[456]**4 |[369]*[456]**4 |[147]*[456]**4
| |
----------------------+----------------------+---------------------
| |
[369]*[123]**1+ |[147]*[123]**1+ |[258]*[123]**1+
[258]*[123]**2+ |[369]*[123]**2+ |[147]*[123]**2+
[369]*[789]**3+ |[147]*[789]**3+ |[258]*[789]**3+
[258]*[789]**4 |[369]*[789]**4 |[147]*[789]**4
| |
----------------------+----------------------+---------------------
| |
[369]*[456]**1+ |[147]*[456]**1+ |[258]*[456]**1+
[258]*[456]**2+ |[369]*[456]**2+ |[147]*[456]**2+
[369]*[123]**3+ |[147]*[123]**3+ |[258]*[123]**3+
[258]*[123]**4 |[369]*[123]**4 |[147]*[123]**4
| |
----------------------+----------------------+---------------------
Block 8:
----------------------+----------------------+---------------------
| |
*[369][789][24]*[34]+ |*[147][789][24]*[34]+ |*[258][789][24]*[34]+
*[258][789][13]*[34]+ |*[369][789][13]*[34]+ |*[147][789][13]*[34]+
*[369][456][24]*[12]+ |*[147][456][24]*[12]+ |*[258][456][24]*[12]+
*[258][456][13]*[12] |*[369][456][13]*[12] |*[147][456][13]*[12]
| |
----------------------+----------------------+---------------------
| |
*[369][123][24]*[34]+ |*[147][123][24]*[34]+ |*[258][123][24]*[34]+
*[258][123][13]*[34]+ |*[369][123][13]*[34]+ |*[147][123][13]*[34]+
*[369][789][24]*[12]+ |*[147][789][24]*[12]+ |*[258][789][24]*[12]+
*[258][789][13]*[12] |*[369][789][13]*[12] |*[147][789][13]*[12]
| |
----------------------+----------------------+---------------------
| |
*[369][456][24]*[34]+ |*[147][456][24]*[34]+ |*[258][456][24]*[34]+
*[258][456][13]*[34]+ |*[369][456][13]*[34]+ |*[147][456][13]*[34]+
*[369][123][24]*[12]+ |*[147][123][24]*[12]+ |*[258][123][24]*[12]+
*[258][123][13]*[12] |*[369][123][13]*[12] |*[147][123][13]*[12]
| |
----------------------+----------------------+---------------------
Block 9:
----------------------+----------------------+---------------------
| |
**1*** |**2*** |**3***
| |
----------------------+----------------------+---------------------
| |
**4*** |**5*** |**6***
| |
----------------------+----------------------+---------------------
| |
**7*** |**8*** |**9***
| |
----------------------+----------------------+---------------------
Conceptually, POM works in a similar fashion to working with candidates, allbeit with 46,656 pattern labels per cell instead of 9 candidates. In both cases you can begin with an empty grid starting constant and then, as you place your givens, you can follow some very simple rules to eliminate either candidates or solution patterns. With POM, the initial rules are even simpler than they are with candidates. When you place a given digit in a cell then you can eliminate all patterns for that digit that are not contained in that cell. At the same time, you can eliminate the patterns that do occur in that cell for every other digit. All these eliminations can be made wherever the label occurs in the puzzle. If you eliminate pattern "111111" for nine in r1c1, then you eliminate it in the other 8 cells that it occurs as well. These methods can also work together. If a candidate is eliminated from a cell using typical means then the patterns for that eliminated candidate that exist in that cell can be eliminated as well.
Once the number of patterns is reduced to something manageable, then one can always substitute letters or other symbology for the remaining digit labels.
There are some ancient threads, some of them lost, that explained some of the interesting solving options available to a POM grid.
(0) Just the creation of the POM grid finds all single-digit eliminations from hidden singles to single-digit chains to any manner of frankenfish. Candidates in a cell that has no viable patterns for that candidate can be eliminated
(1) For any set of N cells that contains all of the patterns for a particular digit; if any pattern occupies all of those cells, that pattern must be false
(2) POM gives you a convenient "NOT". NOT a particular set of patterns for a digit equals the remaining patterns for that digit. Every cell contains multiple equations where NOT the set of patterns for one of the digits in the cell equals the patterns of all the other digits in the cell. One can use these equations to substitute into other cells--and if any pattern then gets repeated in a cell, it must be false since the cell can only hold one truth at a time and two would be required for that pattern to be true
(3) Given P patterns that exist in N cells that share a house (box, row, or column); if there exists another set of exactly N other cells that contain all of the P patterns plus extras, then the extras must be false and also any patterns which exist in more that one of the second set of cells must also be false. The N=1 case does happen. The N=2 case is interesting as it shows how the exocet presents itself using a POM grid
(...) There are many other ways you can compare equations to either get further refined equations or show that a particular pattern is false.