lagvoid wrote:
I can't think straight but I want to remove the 9 from R7C9, because of the 239, 269, 29 in C9. Would that be valid?
Unfortunately, your naked triple is just an almost naked triple. You have 4 candidates (2,3,6,9) in 3 cells, so you can't exclude the 9 from r7c9.
Here is what you can do:
- Code: Select all
*--------------------------------------------------------------------------------------*
| 68 28 4 | 9 7 5 | 236 16 136 |
| 9 125 12* | 8 6 3 | 25* 4 7 |
| 56 7 3 | 2 4 1 | 569- 569 8 |
|----------------------------+----------------------------+----------------------------|
| 48 348 29 | 6 5 7 | 1 289 239 |
| 1 38 6 | 4 2 9 | 38 7 5 |
| 7 29 5 | 3 1 8 | 4 269 269 |
|----------------------------+----------------------------+----------------------------|
| 2 19 7 | 5 8 4 | 69 3 169 |
| 3 6 18* | 7 9 2 | 58* 158 4 |
| 45 45 89 | 1 3 6 | 7 289 29 |
*--------------------------------------------------------------------------------------*
The xy-chain starting at r8c7 and ending at r2c7 allows one to deduce that r3c7<>5. This creates a naked pair in column 7 (69) implying r1c7<>6.
The xy-wing:
- Code: Select all
*--------------------------------------------------------------------------------------*
| 68 28* 4 | 9 7 5 | 23* 16 136 |
| 9 125 12 | 8 6 3 | 25 4 7 |
| 56 7 3 | 2 4 1 | 69 569 8 |
|----------------------------+----------------------------+----------------------------|
| 48 348 29 | 6 5 7 | 1 289 239 |
| 1 38* 6 | 4 2 9 | 38- 7 5 |
| 7 29 5 | 3 1 8 | 4 269 269 |
|----------------------------+----------------------------+----------------------------|
| 2 19 7 | 5 8 4 | 69 3 169 |
| 3 6 18 | 7 9 2 | 58 158 4 |
| 45 45 89 | 1 3 6 | 7 289 29 |
*--------------------------------------------------------------------------------------*
now implies that r5c7<>3 and the puzzle is solved.