Azalea

Post puzzles for others to solve here.

Azalea

Postby shye » Sat Oct 15, 2022 7:14 am

Code: Select all
+-------+-------+-------+
| 9 . . | 8 . 4 | 2 6 . |
| . . 2 | . . . | . 3 4 |
| . 4 . | . . . | . . 1 |
+-------+-------+-------+
| 6 . . | 1 2 3 | . . 8 |
| . . . | 4 . 6 | . 2 . |
| 2 . . | 7 8 . | . . 6 |
+-------+-------+-------+
| 4 . . | . . . | . . 2 |
| 8 9 . | . 4 . | . 7 3 |
| . 2 3 | 6 . 7 | 4 8 . |
+-------+-------+-------+
9..8.426...2....34.4......16..123..8...4.6.2.2..78...64.......289..4..73.236.748.

estimated rating: 7.6
similar to an old puzzle of mine, wanted to rework it and make it smoother :)
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Azalea

Postby jco » Sat Oct 15, 2022 12:46 pm

After basics

In words, either we have (9)r5c5 xor
no 5 at r19c5,r5c19, and this implies (5)r1c9=(5)r9c1 (Fireworks)
so no 5 at r9c9, which in turn implies (5)r9c1,(5)r1c9 resulting in no 5 at block b1.
Therefore, +9 r5c5; ste

Code: Select all
.---------------------------------------------------------------------.
|  9     c1357  c157    | 8    B*1357   4      | 2      6    fd57     |
| b157    68     2      | 59     15679  159    | 5789   3      4      |
| b357    4      68     | 2359   35679  259    | 5789   59     1      |
|-----------------------+----------------------+----------------------|
|  6      57     4579   | 1      2      3      | 579    459    8      |
|B*1357   13578  15789  | 4     A59     6      | 13579  2    B*579    |
|  2      135    1459   | 7      8      59     | 1359   1459   6      |
|-----------------------+----------------------+----------------------|
|  4      1567   1567   | 359    1359   8      | 1569   159    2      |
|  8      9      156    | 25     4      125    | 156    7      3      |
|fa15     2      3      | 6    B*159    7      | 4      8     e59     |
'---------------------------------------------------------------------'

(9=5)r5c5 - (5)r5c1|r1c5|r9c5|r5c9 = [[(5)r9c1 = (5)r23c1 - (5)r1c23 = (5)r1c9] - (5)r9c9 = (5)r1c9&r9c1 - (5)r23c1|r1c23 = !]
=> +9 r5c5; ste

EDIT: as a kraken
Hidden Text: Show
Kraken Column (5)r159c9
(5)r1c9 - (5)r1c23|r9c9 = (5)r23c1&(9)r9c9 - (5)r9c1|(9)r9c5 = (1)r9c1 & (5)r9c5
(5)r5c9
(5)r9c9 - (5)r1c9|r9c1 = Fireworks (5)r235c1,r1c235 - (1|3|7)r5c1 & (1|3|7)r1c5
=> -5 r5c5; ste


@ ryokousha, jovi: Very Nice!
Last edited by jco on Sat Oct 15, 2022 6:37 pm, edited 4 times in total.
JCO
jco
 
Posts: 790
Joined: 09 June 2020

Re: Azalea

Postby ryokousha » Sat Oct 15, 2022 2:48 pm

The empty rectangle in b1 and the corners of b379 effectively form an odd-loop of 5-ness; r5c19 and r19c5 being guardians. Hence -5r5c5, stte.
ryokousha
 
Posts: 37
Joined: 30 April 2022

Re: Azalea

Postby jovi_al01 » Sat Oct 15, 2022 4:47 pm

I saw it the same way ryo did. after basics:

Code: Select all
.--------------------.------------------.------------------.
| 9    #1357  #157   | 8    *1357   4   | 2      6    #57  |
|#157   68     2     | 59    15679  159 | 5789   3     4   |
|#357   4      68    | 2359  35679  259 | 5789   59    1   |
:--------------------+------------------+------------------:
| 6     57     4579  | 1     2      3   | 579    459   8   |
|*1357  13578  15789 | 4    (59)    6   | 13579  2    *579 |
| 2     135    1459  | 7     8      59  | 1359   1459  6   |
:--------------------+------------------+------------------:
| 4     1567   1567  | 359   1359   8   | 1569   159   2   |
| 8     9      156   | 25    4      125 | 156    7     3   |
|#15    2      3     | 6    *159    7   | 4      8    #59  |
'--------------------'------------------'------------------'

grouped oddagon (#) with four guardians (*)
-5r5c5

stte
User avatar
jovi_al01
 
Posts: 102
Joined: 26 July 2021

Re: Azalea

Postby P.O. » Sat Oct 15, 2022 5:55 pm

Code: Select all
( n8r7c6 )

QUAD BOX: ((1 2 1) (1 3 5 7)) ((1 3 1) (1 5 7)) ((2 1 1) (1 5 7)) ((3 1 1) (3 5 7))
(((2 2 1) (1 5 6 7 8)) ((3 3 1) (5 6 7 8)))

r2c4{n5 n9} - c6n9{r23 r6} - r5c5{n9 n5} => r123c5 <> 5

5r9c159 => r5c5 <> 5
 r9c1=5 - b1n5{r23c1 r1c23} - c9n5{r1 r5}
 r9c5=5
 r9c9=5 - r1n5{c9 c23} - c1n5{r23 r5}
 
ste.

with templates this puzzle is solved in 3-templates, in fact only one combination is enough to get the solution: after initialization there are fifty valid instances of (5 6 8) which all put 5 in r6c6.
Hidden Text: Show
Code: Select all
initialization:
#VT: (15 2 4 2 87 3 14 2 17)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(10) nil nil nil nil nil (2 3) nil nil

9      135    15     8      1357   4      2      6      57             
57     15678  2      59     15679  159    5789   3      4               
357    4      5678   2359   35679  259    5789   59     1               
6      57     4579   1      2      3      579    459    8               
1357   13578  15789  4      59     6      13579  2      579             
2      135    1459   7      8      59     1359   1459   6               
4      1567   1567   359    1359   8      1569   159    2               
8      9      156    25     4      125    156    7      3               
15     2      3      6      159    7      4      8      59             

(5 6 8): 50 instances.

...8...65.6.5..8..5.8.6....6......58.85..6.......85..6.5...86..8.6...5.....65..8.
...8...65.8.56....5.6...8..6......58.58..6.......85..6.6...85..8.5...6.....65..8.
...8...65.8.56....5.6...8..6.....5.8.58..6.......85..6.6...8.5.8.5...6.....65..8.
...8...65.8.56....5.6...8..65......8..8..65......85..6.6...8.5.8.5...6.....65..8.
...8...65.6.5..8..5.8.6....65......8.8...65......85..6..6..8.5.8.5...6.....65..8.
...85..6..8..6.5..5.6...8..6......58.58..6.......85..6.6.5.8...8.5...6.....6...85
...85..6..8..6.5..5.6...8..6......58.58..6.......85..6.65..8...8..5..6.....6...85
...8...6556....8....856....6......58.85..6.......85..6.5...86..8.6...5.....65..8.
...8...6558..6......65..8..6......58.58..6.......85..6.6...85..8.5...6.....65..8.
...8...6558..6......65..8..6.....5.8.58..6.......85..6.6...8.5.8.5...6.....65..8.
...8...6558..6......65..8..65......8..8..65......85..6.6...8.5.8.5...6.....65..8.
...8...6556....8....856....65......8.8...65......85..6..6..8.5.8.5...6.....65..8.
...85..6.56....8....8.6..5.6.....5.8.85..6.......85..6.5...86..8.65........6...85
...85..6.56....8....8.6..5.6.....5.8.85..6.......85..6.56..8...8..5..6.....6...85
...85..6.58..6......6...85.6.....5.8.58..6.......85..6.6.5.8...8.5...6.....6...85
...85..6.58..6......6...85.6.....5.8.58..6.......85..6.65..8...8..5..6.....6...85
...85..6.56....8....8.6..5.6.5.....8.8...65......85..6.5...86..8.65........6...85
...85..6.56....8....8.6..5.6.5.....8.8...65......85..6.56..8...8..5..6.....6...85
...85..6.58..6......6...85.65......8..8..65......85..6.6.5.8...8.5...6.....6...85
...85..6.56....8....8.6..5.65......8.8...65......85..6..65.8...8.5...6.....6...85
...85..6.58..6......6...85.65......8..8..65......85..6.65..8...8..5..6.....6...85
...85..6.56....8....8.6..5.65......8.8...65......85..6..5..86..8.65........6...85
...85..6.56....8....8.6.5..6......58.85..6.......85..6.5...86..8.65........6...85
...85..6.56....8....8.6.5..6......58.85..6.......85..6.56..8...8..5..6.....6...85
..58...6..8..6.5....6.5.8..65......8..8..6..5....85..6.6...8.5.8..5..6..5..6...8.
..58...6..6..5.8....8.6..5.6.....5.858...6.......85..6.5...86..8.65........6...85
..58...6..6..5.8....8.6..5.6.....5.858...6.......85..6.56..8...8..5..6.....6...85
..58...6..6..5.8....8.6..5.65......8.8...6..5....85..6..6..85..8..5..6..5..6...8.
..58...6..6..5.8....8.6..5.65......8.8...6..5....85..6...5.86..8.6...5..5..6...8.
..58...6..6..5.8....8.6.5..6......5858...6.......85..6.5...86..8.65........6...85
..58...6..6..5.8....8.6.5..6......5858...6.......85..6.56..8...8..5..6.....6...85
..58...6..6..5.8....8.6.5..65......8.8...6..5....85..6.....865.8.65.....5..6...8.
..58...6..6..5.8....8.6.5..65......8.8...6..5....85..6..6..8.5.8..5..6..5..6...8.
..58...6..6.5..8....8.6..5.65......8.8...6..5....85..6....586..8.6...5..5..6...8.
.5.8...6..8..6.5....6.5.8..6......585.8..6.......85..6.6.5.8...8.5...6.....6...85
.5.8...6..8..6.5....6.5.8..6......585.8..6.......85..6.65..8...8..5..6.....6...85
.5.8...6..8..6.5....6.5.8..6.5.....8..8..6..5....85..6.6...8.5.8..5..6..5..6...8.
.5.8...6..8..6.5....65..8..6......585.8..6.......85..6.6..58...8.5...6.....6...85
.5.8...6..6..5.8....8.6..5.6.....5.858...6.......85..6..65.8...8.5...6.....6...85
.5.8...6..6..5.8....8.6..5.6.....5.858...6.......85..6..5..86..8.65........6...85
.5.8...6..6..5.8....8.6..5.6.5.....8.8...6..5....85..6..6..85..8..5..6..5..6...8.
.5.8...6..6..5.8....8.6..5.6.5.....8.8...6..5....85..6...5.86..8.6...5..5..6...8.
.5.8...6..6..5.8....8.6.5..6......5858...6.......85..6..65.8...8.5...6.....6...85
.5.8...6..6..5.8....8.6.5..6......5858...6.......85..6..5..86..8.65........6...85
.5.8...6..6..5.8....8.6.5..6.5.....8.8...6..5....85..6.....865.8.65.....5..6...8.
.5.8...6..6..5.8....8.6.5..6.5.....8.8...6..5....85..6..6..8.5.8..5..6..5..6...8.
.5.8...6..8.56......6...85.6.....5.85.8..6.......85..6.6..58...8.5...6.....6...85
.5.8...6..6.5..8....8.6..5.6.....5.858...6.......85..6..6.58...8.5...6.....6...85
.5.8...6..6.5..8....8.6..5.6.5.....8.8...6..5....85..6....586..8.6...5..5..6...8.
.5.8...6..6.5..8....8.6.5..6......5858...6.......85..6..6.58...8.5...6.....6...85

#VT: (15 2 4 2 38 3 14 2 17)
Cells: nil nil nil nil (51) nil nil nil nil
SetVC: ( n5r6c6   n9r5c5   n9r9c9   n9r7c4   n5r2c4   n2r8c4
         n1r8c6   n5r9c5   n7r2c1   n9r2c6   n8r2c7   n3r3c4
         n2r3c6   n3r7c5   n1r9c1   n5r3c1   n9r3c8   n3r5c1
         n1r6c2   n4r6c8   n3r1c2   n1r1c3   n7r1c5   n5r1c9
         n6r2c2   n1r2c5   n8r3c3   n6r3c5   n7r3c7   n5r4c8
         n1r5c7   n7r5c9   n9r6c3   n3r6c7   n1r7c8   n7r4c2
         n4r4c3   n9r4c7   n5r5c3   n5r7c2   n6r7c7   n6r8c3
         n5r8c7   n8r5c2   n7r7c3 )
9 3 1   8 7 4   2 6 5
7 6 2   5 1 9   8 3 4
5 4 8   3 6 2   7 9 1
6 7 4   1 2 3   9 5 8
3 8 5   4 9 6   1 2 7
2 1 9   7 8 5   3 4 6
4 5 7   9 3 8   6 1 2
8 9 6   2 4 1   5 7 3
1 2 3   6 5 7   4 8 9
P.O.
 
Posts: 1832
Joined: 07 June 2021

Re: Azalea

Postby shye » Mon Oct 17, 2022 12:10 am

thank you for your solves! lots of different perspectives, but each focusing on positions of 5s like i'd hoped :)
the oddagon was how i saw it as well
User avatar
shye
 
Posts: 332
Joined: 12 June 2021


Return to Puzzles