August 23, 2019

Post puzzles for others to solve here.

August 23, 2019

Postby ArkieTech » Fri Aug 23, 2019 10:26 am

Code: Select all
 *-----------*
 |..1|..4|6.9|
 |.3.|.2.|.7.|
 |..8|6..|...|
 |---+---+---|
 |8..|...|4..|
 |.1.|...|.5.|
 |..3|...|..6|
 |---+---+---|
 |...|..7|5..|
 |.7.|.9.|.8.|
 |5.4|1..|7..|
 *-----------*



Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: August 23, 2019

Postby SCLT » Fri Aug 23, 2019 10:57 am

Many XY-Chains today, so here's something silly:

Code: Select all
+-----------+--------------------+------------------+
| 27  25  1 | 8   57     4       | 6      3   9     |
| 4   3   6 | 9   2      15      | 18     7   [1]58 |
| 79 b59  8 | 6   1[5]7  3       | 2      4  a15    |
+-----------+--------------------+------------------+
| 8  c29  5 | 3   6      19      | 4     d12  7     |
| 6   1   7 | 24  48     2[8]9   | 3[8]9  5   38    |
| 29  4   3 | 7  f15    f[19]5-8 | 89    e12  6     |
+-----------+--------------------+------------------+
| 13  8   9 | 24  34     7       | 5      6   12[3] |
| 13  7   2 | 5   9      6       | 13     8   4     |
| 5   6   4 | 1   38     28      | 7      9   23    |
+-----------+--------------------+------------------+


BUG+7 (only the long common partial chain for the last two nodes in the SIS shown in grid):

Code: Select all
8r5c6 - r6c6
||
(1|9)r6c6 - 8r6c6
||
5r3c5 - 5r6c5 = r6c6 - 8r6c6
||
3r7c9 - (3=4)r7c5 - (4=8)r5c5 - r6c6
||
8r5c7 - (8=1)r2c7 - (1=5)r3c9 - (5=9)r3c2 - (9=2)r4c2 - (2=1)r4c8 - r6c8 = (15)r6c56 - 8r6c6
||
1r2c9 - (1=5)r3c9 - (5=9)r3c2 - (9=2)r4c2 - (2=1)r4c8 - r6c8 = (15)r6c56 - 8r6c6


-8r6c6; stte
SCLT
 
Posts: 171
Joined: 06 August 2013

Re: August 23, 2019

Postby SpAce » Fri Aug 23, 2019 2:07 pm

Code: Select all
.-----------.-------------------.---------------.
| 27  25  1 | 8   57    4       |  6    3   9   |
| 4   3   6 | 9   2    a1[5]    | a18   7   158 |
| 79  59  8 | 6   157   3       |  2    4   15  |
:-----------+-------------------+---------------:
| 8   29  5 | 3   6     19      |  4    12  7   |
| 6   1   7 | 24  48    289     |  389  5   38  |
| 29  4   3 | 7   15   b1(8)9-5 | b89   12  6   |
:-----------+-------------------+---------------:
| 13  8   9 | 24  34    7       |  5    6   123 |
| 13  7   2 | 5   9     6       |  13   8   4   |
| 5   6   4 | 1   38    28      |  7    9   23  |
'-----------'-------------------'---------------'

H3-Wing:

(5=18)r2c67 - r6c7 = (8)r6c6 => -5 r6c6; stte

It was actually found through this BUG+7:

Code: Select all
(1|9)r6c6
||
(1)r2c9 - (1=5)r2c6
||
(5)r3c5 - (5=18)r2c67 - r6c7 = (8)r6c6
||
(8)r5c6 - r6c6 = (81)r62c7 - (1=5)r2c6
||
(8)r5c7 - r6c7 = (8)r6c6
||
(3)r7c9 - (3=8)r5c9 - r6c7 = (8)r6c6

=> -5 r6c6; stte
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: August 23, 2019

Postby Cenoman » Fri Aug 23, 2019 2:27 pm

Code: Select all
 +-----------------+--------------------+-------------------+
 |  27  c25   1    |  8   b57    4      |  6     3    9     |
 |  4    3    6    |  9    2     5-1*   | a18    7    158*  |
 |  79   59   8    |  6    157*  3      |  2     4    15*   |
 +-----------------+--------------------+-------------------+
 |  8   c29   5    |  3    6   da19     |  4     12   7     |
 |  6    1    7    |  24   48    289    |  389   5    38    |
 |  29   4    3    |  7    15*   1589*  |  89    12   6     |
 +-----------------+--------------------+-------------------+
 |  13   8    9    |  24   34    7      |  5     6    123   |
 |  13   7    2    |  5    9     6      |  13    8    4     |
 |  5    6    4    |  1    38    28     |  7     9    23    |
 +-----------------+--------------------+-------------------+

DP(15)r23c9, b2p68, r6c56 (BUG-lite) using externals
(1)r2c7|r4c6 == (5)r1c5 - (5=29)r14c2 - (9=1)r4c6 => -1 r2c6; ste
Cenoman
Cenoman
 
Posts: 2978
Joined: 21 November 2016
Location: France

Re: August 23, 2019

Postby Sudtyro2 » Fri Aug 23, 2019 4:03 pm

Code: Select all
+--------------+-----------------+--------------+
| 27  a25   1  | 8  a5+7   4     | 6   3   9    |
| 4    3    6  | 9   2    a15    | 18  7   158  |
| 79   59   8  | 6   157   3     | 2   4   15   |
+--------------+-----------------+--------------+
| 8   b29   5  | 3   6    b19    | 4   12  7    |
| 6    1    7  | 24  48    289   | 389 5   38   |
| 29   4    3  | 7   15    1589  | 89  12  6    |
+--------------+-----------------+--------------+
| 13   8    9  | 24  34    7     | 5   6   123  |
| 13   7    2  | 5   9     6     | 13  8   4    |
| 5    6    4  | 1   38    28    | 7   9   23   |
+--------------+-----------------+--------------+

Myth's CoALS rule applied to the two overlapping ALS tagged (a).
(57=12)r1c25,r2c6 - (1|2=9)r4c26[contradiction] => +7 r1c5; stte.

SteveC
Last edited by Sudtyro2 on Wed Aug 28, 2019 7:57 pm, edited 1 time in total.
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: August 23, 2019

Postby SpAce » Sat Aug 24, 2019 12:16 am

Hi Steve,

Sudtyro2 wrote:(57=12)r1c25,r2c6 - (1|2=9)r4c26[contradiction] => +7 r1c5; stte.

I have no problem with your logic, and very little with anything else either. I'm just wondering if the contradiction condition could be shown more clearly. As written, (9)r4c26 is not an obvious contradiction per se, because it just means 9 is in at least one of those cells (OR). What you mean is AND. Thus, maybe something like this:

(1|2)r4c26 = (9)r2c2&r2c6[contradiction]

Btw, you could also flip it around and use (9)r2c2&r2c6 as a DP and the 1 and 2 as guardians. Or what the hell, why not use externals:

(9)r2c2&r2c6 [DP]
||
(9)r6c1 - (9=72)r31c1 - (21=57)r1c25,r2c6
||
(9)r56c6 - (9=1)r4c6 - (12=57)r1c25,r2c6

=> +7 r1c5

Why make it simple if you can make it complicated? :)
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: August 23, 2019

Postby Sudtyro2 » Sat Aug 24, 2019 12:40 am

SpAce wrote:
Sudtyro2 wrote:(57=12)r1c25,r2c6 - (1|2=9)r4c26[contradiction] => +7 r1c5; stte.

Hi SpAce,
Thx for the feedback!
I wasn't sure how to properly notate the contradiction, but writing - (1|2= ... does clearly indicate that BOTH digits 1 and 2 are false. So, a digit 9 left in both cells of r4c26 would be a clear impossibility. But I have no problem with your (1|2)r4c26 = (9)r2c2&r2c6[contradiction] notation, either!

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013


Return to Puzzles