August 23, 2017

Post puzzles for others to solve here.

August 23, 2017

Postby ArkieTech » Tue Aug 22, 2017 11:03 pm

Code: Select all
 *-----------*
 |..7|..6|.5.|
 |...|...|..6|
 |..9|...|84.|
 |---+---+---|
 |..8|..9|...|
 |.1.|4..|.7.|
 |.5.|2..|.1.|
 |---+---+---|
 |3.6|..7|...|
 |...|.4.|.9.|
 |4..|.1.|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: August 23, 2017

Postby Leren » Tue Aug 22, 2017 11:14 pm

Code: Select all
*-------------------------------------------------------*
|*128   4     7    | 389   2389  6   | 1239  5     1239 |
|*1258 *238  f1235 | 35789 23589 4   | 12379 3-2   6    |
|*256  *236   9    | 357   235   1   | 8     4     237  |
|------------------+-----------------+------------------|
|*267  *2367  8    | 1     367   9   | 45   *236   45   |
| 269   1     23   | 4     368   5   | 2369  7     2389 |
| 679   5     4    | 2     3678  38  | 369   1     389  |
|------------------+-----------------+------------------|
| 3    *289   6    | 589   589   7   | 14   *28    14   |
| 12578 278   125  | 368   4     238 | 23567 9     2357 |
| 4     2789  25   | 3689  1     238 | 23567 2368  2357 |
*-------------------------------------------------------*

Finned Franken Swordfish in 2's r47b1 c128 with a fin Cell r2c3 => - 2 r2c8; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: August 23, 2017

Postby pjb » Tue Aug 22, 2017 11:45 pm

Code: Select all
 128     4       7      | 389    2389   6      | 1239   5      1239   
 1258    238    *1235   | 35789  23589  4      | 12379  3-2    6     
 256     236     9      | 357    235    1      | 8      4      237   
------------------------+----------------------+---------------------
 267     2367    8      | 1      367    9      | 45     236    45     
 269     1      *23     | 4      368    5      | 2369   7      2389   
 679     5       4      | 2      3678   38     | 369    1      389   
------------------------+----------------------+---------------------
 3       289     6      | 589    589    7      | 14     28     14     
 12578   278    *125    | 368    4      238    | 23567  9      2357   
 4       2789   *25     | 3689   1      238    | 23567  2368   2357   

(2)r2c3 - (2)r2c8
(2)r5c3 - r4c12 = r4c8 - (2)r2c8
(2)r8c3 - r7c2 = r7c8 - (2)r2c8
(2)r9c3 - r7c2 = r7c8 - (2)r2c8; => -2 r2c8

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: August 23, 2017

Postby SteveG48 » Wed Aug 23, 2017 12:28 am

Code: Select all
 *--------------------------------------------------------------------*
 | 128    4      7      | 389    2389   6      | 1239   5      1239   |
 | 1258   238   a1235   | 35789  23589  4      | 12379  3-2    6      |
 | 256    236    9      | 357    235    1      | 8      4      237    |
 *----------------------+----------------------+----------------------|
 | 267    2367   8      | 1      367    9      | 45    d236    45     |
 | 269    1     b23     | 4      368    5      |c2369   7     c2389   |
 | 679    5      4      | 2      3678   38     | 369    1      389    |
 *----------------------+----------------------+----------------------|
 | 3     c289    6      | 589    589    7      | 14    d28     14     |
 | 12578  278   b125    | 368    4      238    | 23567  9      2357   |
 | 4      2789  b25     | 3689   1      238    | 23567  2368   2357   |
 *--------------------------------------------------------------------*


Essentially the same as Phil:

2r2c3 = r589c2 - (2r7c2)&(2r5c79) = r47c8 => -2 r2c8 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: August 23, 2017

Postby Cenoman » Wed Aug 23, 2017 8:31 pm

pjb wrote:(2)r2c3 - (2)r2c8
(2)r5c3 - r4c12 = r4c8 - (2)r2c8
(2)r8c3 - r7c2 = r7c8 - (2)r2c8
(2)r9c3 - r7c2 = r7c8 - (2)r2c8; => -2 r2c8

phil's kraken is one-digit. I wondered if such logic was also a fish's.

Here is Leren's logic (as a matrix):
Code: Select all
2r7c8 2r7c2
2r4c8 2r4c2  2r4c1
2r2c3 2r23c2 2r123c1

where base sets r7, r4, b1 are explicit in matrix' rows and cover sets c8, c2, c1 in matrix' columns.

phil's logic can be written:
Code: Select all
2r7c8 2r7c2
2r4c8        2r4c12
2r2c3 2r89c3 2r5c3

where a 3-fish with base sets r7, r4, c3 and cover sets c8, b7, b3, with a fin in r2c3, could be identified. Matrices are obviously similar.
Code: Select all
 +------------------------+------------------------+------------------------+
 |  128     4      7      |  389     2389    6     |  1239    5      1239   |
 |  1258    238   f1235   |  35789   23589   4     |  12379   3-2    6      |
 |  256     236    9      |  357     235     1     |  8       4      237    |
 +------------------------+------------------------+------------------------+
 |  267*    2367*  8      |  1       367     9     |  45      236*   45     |
 |  269     1      23*    |  4       368     5     |  2369    7      2389   |
 |  679     5      4      |  2       3678    38    |  369     1      389    |
 +------------------------+------------------------+------------------------+
 |  3       289*   6      |  589     589     7     |  14      28*    14     |
 |  12578   278    125*   |  368     4       238   |  23567   9      2357   |
 |  4       2789   25*    |  3689    1       238   |  23567   2368   2357   |
 +------------------------+------------------------+------------------------+

...but my lack of UFG culture prevents me from concluding if it is a catalogued fish, and if so, from giving it a name. May be some of you knows ?

Cenoman
Cenoman
Cenoman
 
Posts: 3011
Joined: 21 November 2016
Location: France

Re: August 23, 2017

Postby Sudtyro2 » Wed Aug 23, 2017 9:15 pm

Leren wrote: Finned Franken Swordfish in 2's r47b1 c128 with a fin Cell r2c3 => - 2 r2c8; stte

Hi Cenoman,
I think Leren nailed this one, with a single non-remote fin.
I couldn't find anything simpler (in a Franken context).

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: August 23, 2017

Postby Cenoman » Wed Aug 23, 2017 10:38 pm

Sudtyro2 wrote:I think Leren nailed this one, with a single non-remote fin.
I couldn't find anything simpler (in a Franken context).

SteveC


I have seen (and hopefully, understood Leren's franken SF) See my TM transcription.
According to the UFG fig 3B1, it is of type rrb/ccc (transpose of ccb/rrr type)

I was trying to find another one (not necessary simpler!). The alternate TM (3x3) seems to indicate three base sets/three cover sets + one fin.
According to the UFG fig 3B2, it would be of type rrc/cbb (transpose of rcc/rbb type) and called "mutant swordfish"
So eventually, it would be a "finned mutant swordfish" ? Hopefully my interpretation is correct...

Thank you, Steve for forcing me to read UFG comprehensively!
Cenoman.
Cenoman
Cenoman
 
Posts: 3011
Joined: 21 November 2016
Location: France

Re: August 23, 2017

Postby eleven » Wed Aug 23, 2017 11:40 pm

Leren wrote:Finned Franken Swordfish in 2's r47b1 c128 with a fin Cell r2c3 => - 2 r2c8; stte

or finned jelly fish 2r1347c1258 with fins r1r79,r3c9

Code: Select all
 *--------------------------------------------------------------------------*
 | c128     4      7      |  389     2389    6     |  1239    5      1239   |
 | c1258   c238   e1235   |  35789   23589   4     |  12379   23     6      |
 | c256    c236    9      |  357     235     1     |  8       4      237    |
 |------------------------+------------------------+------------------------|
 | b267    b2367   8      |  1       367     9     |  45     a236    45     |
 |  269     1      23     |  4       368     5     |  2369    7      2389   |
 |  679     5      4      |  2       3678    38    |  369     1      389    |
 |------------------------+------------------------+------------------------|
 |  3      b289    6      |  589     589     7     |  14     a28     14     |
 |  12578   278    125    |  368     4       238   |  23567   9      2357   |
 |  4       2789   25     |  3689    1       238   |  23567   2368   2357   |
 *--------------------------------------------------------------------------*

2r47c8=r4c12&r7c2-b1c12=r2c3 => -2r2c8, stte
eleven
 
Posts: 3177
Joined: 10 February 2008


Return to Puzzles