August 2, 2018

Post puzzles for others to solve here.

August 2, 2018

Postby ArkieTech » Thu Aug 02, 2018 10:05 am

Code: Select all
 *-----------*
 |..1|..6|..3|
 |.4.|..1|8.6|
 |..2|4..|5..|
 |---+---+---|
 |7.5|3..|...|
 |4..|...|..1|
 |...|..2|3.5|
 |---+---+---|
 |..9|..4|6..|
 |2.6|8..|.9.|
 |5..|2..|1..|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: August 2, 2018

Postby SCLT » Thu Aug 02, 2018 10:32 am

Code: Select all
+---------------------+---------------------+-------------------+
|  8      5       1   |  79     2      6    |  479   47    3    |
|  39     4       7   |  59     359    1    |  8     2     6    |
| a369*  a369*    2   |  4      8     b37   |  5     1     79   |
+---------------------+---------------------+-------------------+
|  7      1269    5   |  3     C149    8    |  249   46    49   |
|  4      269     3   |  5679   579    57   |  279   8     1    |
| A169*  A169*    8   | B1679  B1479   2    |  3     467   5    |
+---------------------+---------------------+-------------------+
|  13     8       9   |  17     137    4    |  6     5     2    |
|  2     E1-3     6   |  8     D135   c35   |  47    9     47   |
|  5      7       4   |  2      6      9    |  1     3     8    |
+---------------------+---------------------+-------------------+


UR (*) on 6/9 r36c12, using internals:

3r3c12 - r3c6 = r8c6 (abc)
1r6c12 - r6c45 = r4c5 - r8c5 = r8c2 (ABCDE)

=> -3 r8c2 ; stte
SCLT
 
Posts: 171
Joined: 06 August 2013

Re: August 2, 2018

Postby Ngisa » Thu Aug 02, 2018 1:45 pm

Code: Select all
+--------------------+-----------------------+--------------------+
| 8       5        1 | 9-7       2        6  | 479     47      3  |
|c39      4        7 | 59       d359      1  | 8       2       6  |
| 369     369      2 | 4         8       e37 | 5       1       79 |
+--------------------+-----------------------+--------------------+
| 7       1269     5 | 3         149      8  | 249     46      49 |
| 4       269      3 | 5679      579      57 | 279     8       1  |
| 169     169      8 | 1679      1479     2  | 3       467     5  |
+--------------------+-----------------------+--------------------+
|b13      8        9 |a17        137      4  | 6       5       2  |
| 2       13       6 | 8         135      35 | 47      9       47 |
| 5       7        4 | 2         6        9  | 1       3       8  |
+--------------------+-----------------------+--------------------+

(7=1)r7c4 - (1=3)r7c1 - r2c1 = r2c5 - (3=7)r3c6 => - 7r1c4; stte


Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: August 2, 2018

Postby Sudtyro2 » Thu Aug 02, 2018 4:49 pm

Code: Select all
+---------------+-------------------+------------+
| 8     5    1  | c79     2      6  | 479 47  3  |
| 39    4    7  |  59     359    1  | 8   2   6  |
| 369   369  2  |  4      8     d37 | 5   1   79 |
+---------------+-------------------+------------+
| 7    B1269 5  |  3     C149#   8  | 249 46  49 |
| 4     269  3  |  5679   579    57 | 279 8   1  |
| 169* A169# 8  | a1679#  1479*  2  | 3   467 5  |
+---------------+-------------------+------------+
| 13*   8    9  | b17     137#   4  | 6   5   2  |
| 2     13*  6  |  8     e35-1* d35 | 47  9   47 |
| 5     7    4  |  2      6      9  | 1   3   8  |
+---------------+-------------------+------------+
In 1s, a 5-link oddagon(*) having four guardians(#) => - 1r8c5; stte
Code: Select all
1r6c4 - (1=7)r7c4 - r1c4 = (73-5)r38c6 = 5r8c5 - 1r8c5; abcde
1r6c2 - r4c2 = 1r4c5                           - 1r8c5; ABC
1r47c5                                         - 1r8c5;
Or, more simply, the Kraken (1)c4 => - 1r8c5; stte

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: August 2, 2018

Postby Cenoman » Thu Aug 02, 2018 9:42 pm

Code: Select all
 +--------------------+---------------------+-------------------+
 |  8     5      1    | b79     2      6    |  479   47    3    |
 |  9-3   4      7    | b59    b359    1    |  8     2     6    |
 |  369   369    2    |  4      8      37   |  5     1     79   |
 +--------------------+---------------------+-------------------+
 |  7     1269   5    |  3      149    8    |  249   46    49   |
 |  4     269    3    |  5679   579    57   |  279   8     1    |
 |  169   169    8    |  1679   1479   2    |  3     467   5    |
 +--------------------+---------------------+-------------------+
 | a13    8      9    | a17     17-3   4    |  6     5     2    |
 |  2     13     6    |  8      135    35   |  47    9     47   |
 |  5     7      4    |  2      6      9    |  1     3     8    |
 +--------------------+---------------------+-------------------+

(13=7)r7c14 - (7=593)b2p145 => -3 r2c1,r7c5; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: August 2, 2018

Postby SpAce » Thu Aug 02, 2018 9:46 pm

Sudtyro2 wrote:Or, more simply, the Kraken (1)c4 => - 1r8c5; stte

Or even more simply as an AIC: (1)r7c4 =...= (5)r8c5. While perfectly correct, I'd say two-way Krakens are similarly questionable as two-way Death Blossoms. Then again, it doesn't hurt to present different POVs of the same chain, especially since basic AICs are pretty boring :) Thus, let me turn that into a (sort of) Kraken not usually seen:

Kraken Candidate (7)r1c4:

(7)r1c4(true) - (7=1)r7c4
+
(7)r1c4(false) = (73-5)r38c6 = (5)r8c5

=> -1 r8c5

PS. This particular "Kraken" is obviously the most useless type, as it can only be two-way and thus always presentable as a simple AIC. SudokuWiki calls these "Digit Forcing Chains" and oddly enough uses them quite often. I have no clue why, because it could just as easily use AICs (or rather Discontinuous Nice Loops as its only real AICs are XY Chains). It seems like a totally unnecessary and confusing complication in that solver. Does anyone have a theory why it does that?
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: August 2, 2018

Postby pjb » Thu Aug 02, 2018 11:07 pm

Code: Select all
 8       5       1      |a79     2      6      | 479    47     3     
d39      4       7      | 5-9    35-9   1      | 8      2      6     
 369     369     2      | 4      8      37     | 5      1      79     
------------------------+----------------------+---------------------
 7       1269    5      | 3      149    8      | 249    46     49     
 4       269     3      | 5679   579    57     | 279    8      1     
 169     169     8      | 1679   1479   2      | 3      467    5     
------------------------+----------------------+---------------------
c13      8       9      |b17     137    4      | 6      5      2     
 2       13      6      | 8      135    35     | 47     9      47     
 5       7       4      | 2      6      9      | 1      3      8     

(9=7)r1c4 - (7=1)r7c4 - (1=3)r7c1 - (3=9)r2c1 => -9 r2c45; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: August 2, 2018

Postby SCLT » Fri Aug 03, 2018 1:35 am

SpAce wrote:Does anyone have a theory why it does that?


I think that Andrew Stuart has once said that he has set a limit on the length of chain that his solver will find, in order to reduce computation time.

This means that techniques like "Digit Forcing Chain", which stitch together two chains, can in effect find chains that are twice as long, so might stumble upon some that earlier single-chain techniques miss.
SCLT
 
Posts: 171
Joined: 06 August 2013

Re: August 2, 2018

Postby SpAce » Fri Aug 03, 2018 10:19 am

SCLT wrote:I think that Andrew Stuart has once said that he has set a limit on the length of chain that his solver will find, in order to reduce computation time. This means that techniques like "Digit Forcing Chain", which stitch together two chains, can in effect find chains that are twice as long, so might stumble upon some that earlier single-chain techniques miss.

I get that there might be implementation issues involved, but that doesn't explain why the end result is not presented as a single AIC. It makes zero sense, since the two chains form an AIC without any modification (just add them up), so there would be no price to pay at all. Andrew's description of the Digit Forcing Chain does not make the obvious connection to AIC either, but instead implies that it's somehow a more advanced technique. It's quite confusing for a newcomer who's just started learning about chains (was for me anyway, though I pretty quickly discovered the truth).

That being said, I'm glad that he does present the technique as an additional (if not very useful) POV of chaining logic missing from most other sources. The simple fact that a candidate has an internal strong link between its two states is quite fundamental to understanding AICs (which have -- implicitly -- the same switching logic at both ends). For example, Phil's AIC above could be presented as an explicit Kraken Candidate / Digit Forcing Chain like this:

(9)r1c4(true)
+
(9)r1c4(false) = (7)r1c4 - (7=1)r7c4 - (1=3)r7c1 - (3=9)r2c1



=> -9 r2c45

The same could be done with any candidate in the chain; the (true) and (false) branches just traverse the chain in opposite directions. For instance:

(7)r7c4 (true) - (7=9)r1c4
+
(7)r7c4 (false) = (1)r7c4 - (1=3)r7c1 - (3=9)r2c1

(Similary any bivalue strong link could be presented as a Kraken Cell, and any bilocation strong link as a Kraken Unit.)
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017


Return to Puzzles