August 2, 2015

Post puzzles for others to solve here.

August 2, 2015

Postby ArkieTech » Sat Aug 01, 2015 11:42 pm

Code: Select all
 *-----------*
 |...|123|...|
 |..4|.5.|...|
 |..3|4.6|27.|
 |---+---+---|
 |4.8|...|7.9|
 |75.|...|.26|
 |6.2|...|8.5|
 |---+---+---|
 |.76|5.2|3..|
 |...|.4.|6..|
 |...|679|...|
 *-----------*


Play/Print this puzzle online

edited to fix link.
Last edited by ArkieTech on Sun Aug 02, 2015 3:10 am, edited 1 time in total.
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: August 2, 2015

Postby SteveG48 » Sun Aug 02, 2015 12:34 am

Code: Select all
 *--------------------------------------------------------------------*
 | 89     689    7      | 1      2      3      |f459   f456    8-4    |
 |e1289   12689  4      | 789    5      78     |f19    f16     3      |
 | 5      189    3      | 4      89     6      | 2      7      18     |
 *----------------------+----------------------+----------------------|
 | 4      13     8      | 2      6      5      | 7      13     9      |
 | 7      5      19     | 89     3      148    | 14     2      6      |
 | 6      139    2      | 79     19     147    | 8      134    5      |
 *----------------------+----------------------+----------------------|
 |d189    7      6      | 5     b18     2      | 3      149   a14     |
 |d1289   1289   159    | 3      4     c18     | 6      159    7      |
 | 3      4      15     | 6      7      9      | 15     8      2      |
 *--------------------------------------------------------------------*


(4=1)r7*c9 - r7c5 = r8c6 - r8*7c1 = r2c1 - (1=5694)b3p1245 => -4 r1c9 ; stte

Or eliminating the (*):

(4=1)r7c9 - r9c7 = r9c3 - r78c1 = r2c1 - (1=5694)b3p1245 => -4 r1c9 ; stte
Last edited by SteveG48 on Sun Aug 02, 2015 12:41 am, edited 1 time in total.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: August 2, 2015

Postby Leren » Sun Aug 02, 2015 12:40 am

Code: Select all
*--------------------------------------------------------------*
| 89    689   7      | 1     2     3      | 459   456   48     |
| 1289  12689 4      | 789   5     78     | 19    16    3      |
| 5     189   3      | 4     89    6      | 2     7     18     |
|--------------------+--------------------+--------------------|
| 4    *13    8      | 2     6     5      | 7    *13    9      |
| 7     5    c19     | 89    3     148    | 14    2     6      |
| 6   b*13+9  2      | 79    19    147    | 8   a*13+4  5      |
|--------------------+--------------------+--------------------|
| 189   7     6      | 5     18    2      | 3    f19-4  14     |
| 1289  1289 d159    | 3     4     18     | 6    e159   7      |
| 3     4     15     | 6     7     9      | 15    8     2      |
*--------------------------------------------------------------*

DP (13) r46c28: (4) r6c8 =DP= (9) r6c2 - r5c3 = r8c3 - r8c8 = (9) r7c8 => - 4 r7c8; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: August 2, 2015

Postby SteveG48 » Sun Aug 02, 2015 12:43 am

Nice one, Leren. I saw the DP and didn't see how to use it.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: August 2, 2015

Postby Marty R. » Sun Aug 02, 2015 12:45 am

Dan, the link brings up a different puzzle.

Dan, don't do anything on my account, I just realized I can copy it to Helmut's format tool.
Last edited by Marty R. on Sun Aug 02, 2015 1:11 am, edited 1 time in total.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: August 2, 2015

Postby Marty R. » Sun Aug 02, 2015 12:53 am

Leren,

I did the wrong puzzle but was ready to go with an ALS XZ rule.

Code: Select all
+----------------+------------+------------+
| 79   789   4   | 6   5  2   | 139 138 37 |
| 5679 56789 3   | 479 1  47  | 69  68  2  |
| 1    679   2   | 3   79 8   | 5   4   67 |
+----------------+------------+------------+
| 3    26    7   | 5   8  1   | 4   26  9  |
| 4    1     69  | 79  2  367 | 36  5   8  |
| 8    269   5   | 49  69 346 | 7   236 1  |
+----------------+------------+------------+
| 679  4     8   | 1   67 5   | 2   369 36 |
| 5679 5679  169 | 2   3  67  | 8   169 4  |
| 2    3     16  | 8   4  9   | 16  7   5  |
+----------------+------------+------------+

Play this puzzle online at the Daily Sudoku site

ALS 6931 in c7r259 and 3679 in r5c467. X=3, Z=9 => -9r2c4

Is it valid?
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: August 2, 2015

Postby Marty R. » Sun Aug 02, 2015 2:57 am

Code: Select all
+----------------+------------+------------+
| 89   689   7   | 1   2  3   | 459 456 48 |
| 1289 12689 4   | 789 5  78  | 19  16  3  |
| 5    189   3   | 4   89 6   | 2   7   18 |
+----------------+------------+------------+
| 4    13    8   | 2   6  5   | 7   13  9  |
| 7    5     19  | 89  3  148 | 14  2   6  |
| 6    139   2   | 79  19 147 | 8   134 5  |
+----------------+------------+------------+
| 189  7     6   | 5   18 2   | 3   149 14 |
| 1289 1289  159 | 3   4  18  | 6   159 7  |
| 3    4     15  | 6   7  9   | 15  8   2  |
+----------------+------------+------------+

Play this puzzle online at the Daily Sudoku site

Type 3 UR (13)r46c28, used much less elegantly than Leren's: 4r6c8=9r6c2 yields common outcome

4r6c8-r5c7=r1c7-(4=8)r1c9
9r6c2-(9=1)r5c3-r4c2=r4c8-(1=6)r2c8-(6=4598)b3p5123=> 8r1c9
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: August 2, 2015

Postby Leren » Sun Aug 02, 2015 3:47 am

Marty R wrote : ALS 6931 in c7r259 and 3679 in r5c467. X=3, Z=9 => -9r2c4

Unfortunately that's no good. The reason is that you have a cell r5c7 common to both ALS's that contains the restricted common digit 3.

If r2c7 <> 9 then r5c7 = 3 but you can't conclude that r5c4 = 9 from that position.

I should have mentioned in my post on yesterday's puzzle that ALS's in a chain can have overlapping cells, but you have to be very careful if the overlapping cells contain the restricted common digit. In practice I avoid this situation although a while ago I think Danny Jones had a move where the overlapping cells contained the restricted common digit, but you were able to locate the True RC digit in the first ALS if the pincer digit was False. For us mere mortals just make sure that the restricted common digits in the 2 ALSs fall into 2 separate groups, but all instances in the first ALS can see all instances in the second ALS.

BTW an ordinary XY wing achieves the elimination (9=6) r2c7 - (6=7) r3c9 - (7=9) r3c4 => - 9 r2c4.

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: August 2, 2015

Postby Marty R. » Sun Aug 02, 2015 5:07 am

Leren, thanks.

I'll try and avoid situations with a cell common to both ALS's. I thought this worked out a little too easily. I probably would've found the XY-Wing, but I was going full bore with the XZ rule to the exclusion of all other moves.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: August 2, 2015

Postby JC Van Hay » Sun Aug 02, 2015 6:30 am

Code: Select all
+---------------------+--------------+------------------+
| 89      689    7    | 1    2   3   | 459   4569  48   |
| 289(1)  12689  4    | 789  5   78  | 9-1   69-1  3    |
| 5       89-1   3    | 4    89  6   | 2     7     8(1) |
+---------------------+--------------+------------------+
| 4       13     8    | 2    6   5   | 7     13    9    |
| 7       5      19   | 89   3   148 | 14    2     6    |
| 6       139    2    | 79   19  147 | 8     134   5    |
+---------------------+--------------+------------------+
| 89(1)   7      6    | 5    18  2   | 3     149   4(1) |
| 289(1)  1289   159  | 3    4   18  | 6     159   7    |
| 3       4      5(1) | 6    7   9   | 5(1)  8     2    |
+---------------------+--------------+------------------+
Swordfish(1R9C19)-1r2c78,r3c2; ste
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: August 2, 2015

Postby pjb » Sun Aug 02, 2015 1:13 pm

Code: Select all
 89      689     7      | 1      2      3      | 459    456    48     
 1289    12689   4      | 789    5      78     | 9-1    16     3     
 5      b189     3      | 4      89     6      | 2      7     a18     
------------------------+----------------------+---------------------
 4      c13      8      | 2      6      5      | 7      13     9     
 7       5      d19     | 89     3      148    | 14     2      6     
 6      c139     2      | 79     19     147    | 8      134    5     
------------------------+----------------------+---------------------
 189     7       6      | 5      18     2      | 3      149    4-1     
 1289    1289    159    | 3      4      18     | 6      159    7     
 3       4      e15     | 6      7      9      |f15     8      2     


(1)r3c9 = r3c2 - r46c2 = r5c3 - r9c3 = r9c7 => -1 r2c7, r7c9; stte

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia


Return to Puzzles