- Code: Select all
*-----------*
|..7|...|..4|
|4..|5..|...|
|...|..3|58.|
|---+---+---|
|..8|.14|3.5|
|..5|.3.|8..|
|3.9|25.|7..|
|---+---+---|
|.61|7..|...|
|...|..2|..7|
|2..|...|6..|
*-----------*
Play/Print this puzzle online
*-----------*
|..7|...|..4|
|4..|5..|...|
|...|..3|58.|
|---+---+---|
|..8|.14|3.5|
|..5|.3.|8..|
|3.9|25.|7..|
|---+---+---|
|.61|7..|...|
|...|..2|..7|
|2..|...|6..|
*-----------*
58 c358 7 |a18 b289 169 |abc129 c236 4
4 c38 26 | 5 abc29-8 169 | 129 7 c39
1 9 26 | 4 7 3 | 5 8 26
------------------------+----------------------+-----------------------
7 2 8 | 6 1 4 | 3 9 5
6 14 5 | 9 3 7 | 8 24 12
3 14 9 | 2 5 8 | 7 46 16
------------------------+----------------------+-----------------------
589 6 1 | 7 489 59 | 249 23 389
589 58 34 | 138 6 2 | 49 15 7
2 7 34 | 138 489 159 | 6 15 89
*---------------------------------------------------*
| 5-8 35-8 7 |h18 289 169 | 129 236 4 |
| 4 a38 g26 | 5 29-8 h169 | 129 7 a39 |
| 1 9 f26 | 4 7 3 | 5 8 e26 |
*----------------+-----------------+----------------|
| 7 2 8 | 6 1 4 | 3 9 5 |
| 6 14 5 | 9 3 7 | 8 c24 12 |
| 3 14 9 | 2 5 8 | 7 c46 d16 |
*----------------+-----------------+----------------|
| 589 6 1 | 7 489 59 | 249 b23 b389 |
| 589 58 34 | 138 6 2 | 49 15 7 |
| 2 7 34 | 138 489 159 | 6 15 b89 |
*---------------------------------------------------*
SIN: 9r2c9 3r2c2 8r2c5 2r1c5 [r1]+1
+-----------------------------------------------------+
| 58 358 7 | d18 D289 169 | e129 236 4 |
| 4 b38 26 | 5 c289 169 | 129 7 a39 |
| 1 9 26 | 4 7 3 | 5 8 26 |
|-----------------+-----------------+-----------------|
| 7 2 8 | 6 1 4 | 3 9 5 |
| 6 14 5 | 9 3 7 | 8 24 12 |
| 3 14 9 | 2 5 8 | 7 46 16 |
|-----------------+-----------------+-----------------|
| 589 6 1 | 7 489 59 | 249 23 389 |
| 589 58 34 | 138 6 2 | 49 15 7 |
| 2 7 34 | 138 489 159 | 6 15 89 |
+-----------------------------------------------------+
# 56 eliminations remain
3r2c9 = (3-8)r2c2 = 8r2c5 - (8 = 1)r1c4 \
- 2 r2c5 = 2 r1c5 - (12=9)r1c7 => -9 r2c9
Here is your "chain" :daj95376 wrote: I'm still looking for an alternate way to handle the split/join.
3r2c9 3r2c2
8r2c2 8r2c5
-------------------
|8r1c4 1r1c4 |
|2r2c5 2r1c5|
| 1r1c7 2r1c7| 9r1c7
-------------------
3r2c9=(3-8)r2c2=8r2c5-HWing[(8=1)r1c4-(1=*2)r1c7-2r1c5=2r2c5]=*9r1c7 => r2c9≠9
daj95376 wrote:On another puzzle, a network splitting and joining of terms was represented as an XY-Wing. My solver returned a SIN that can be re-written as a network where there is a simple splitting and joining of terms. However, I'm still looking for an alternate way to handle the split/join.
<snip>
Yes, it can be represented as a Kraken Cell on r1c7 -- almost identical to Phil's results.
+---------------+-------------------+------------------+
| 58 358 7 | (18) 89(2) 169 | (129) 236 4 |
| 4 (38) 26 | 5 9-8(2) 169 | 129 7 (39) |
| 1 9 26 | 4 7 3 | 5 8 26 |
+---------------+-------------------+------------------+
| 7 2 8 | 6 1 4 | 3 9 5 |
| 6 14 5 | 9 3 7 | 8 24 12 |
| 3 14 9 | 2 5 8 | 7 46 16 |
+---------------+-------------------+------------------+
| 589 6 1 | 7 489 59 | 249 23 389 |
| 589 58 34 | 138 6 2 | 49 15 7 |
| 2 7 34 | 138 489 159 | 6 15 89 |
+---------------+-------------------+------------------+
1r1c7 - (1=8)r1c4
||
2r1c7 - (2=8)r179c5
||
9r1c7 - (9=8)r2c29
=> r2c5<>8
bat999 wrote:Hi
I wasn't able to find a one-stepper for this puzzle.
I can understand Phil's solution.
But I'll leave Steve's for others to peer review.
*--------------------------------------------------------------------------------*
|a58b a358b 7 |a18b 289b 169b | 129b 26-3 4 |
| 4 38 26 | 5 289 S169 | 129 7 c39 |
| 1 9 26 | 4 7 3 | 5 8 26 |
|--------------------------+--------------------------+--------------------------|
| 7 2 8 | 6 1 4 | 3 9 5 |
| 6 14 5 | 9 3 7 | 8 24 12 |
| 3 14 9 | 2 5 8 | 7 46 16 |
|--------------------------+--------------------------+--------------------------|
| 589 6 1 | 7 489 59 | 249 23 389 |
| 589 58 34 | 138 6 2 | 49 15 7 |
| 2 7 34 | 138 489 159 | 6 15 89 |
*--------------------------------------------------------------------------------*
3 Petal Death Blossom: Stem Cell r2c6 {169};
3 r1c8 - (3=1) r1c124 - (1) r2c6;
3 r1c8 -(3=6) r1c124567 - (6) r2c6;
3 r1c8 - (3=9) r2c9 - (9) r2c6; => - 3 r1c8; stte