August 19, 2015

Post puzzles for others to solve here.

August 19, 2015

Postby ArkieTech » Tue Aug 18, 2015 11:36 pm

Code: Select all
 *-----------*
 |..7|...|..4|
 |4..|5..|...|
 |...|..3|58.|
 |---+---+---|
 |..8|.14|3.5|
 |..5|.3.|8..|
 |3.9|25.|7..|
 |---+---+---|
 |.61|7..|...|
 |...|..2|..7|
 |2..|...|6..|
 *-----------*

Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: August 19, 2015

Postby pjb » Wed Aug 19, 2015 12:18 am

Code: Select all
 58     c358     7      |a18    b289    169    |abc129   c236    4     
 4      c38      26     | 5   abc29-8   169    |   129    7     c39     
 1       9       26     | 4      7      3      |   5      8      26     
------------------------+----------------------+-----------------------
 7       2       8      | 6      1      4      |   3      9      5     
 6       14      5      | 9      3      7      |   8      24     12     
 3       14      9      | 2      5      8      |   7      46     16     
------------------------+----------------------+-----------------------
 589     6       1      | 7      489    59     |   249    23     389   
 589     58      34     | 138    6      2      |   49     15     7     
 2       7       34     | 138    489    159    |   6      15     89     

a. (1)r1c7 - (1=8)r1c4 - r2c5
b. (2)r1c7 - r1c5 = (2-8)r2c5
c. (9)r1c7 - (9=3)r2c9 - r1c8 = r1c2 - (3=8)r2c2 - r2c5 => -8 r2c5; stte

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: August 19, 2015

Postby SteveG48 » Wed Aug 19, 2015 12:26 am

Code: Select all
 *---------------------------------------------------*
 | 5-8  35-8 7    |h18   289   169  | 129  236  4    |
 | 4   a38  g26   | 5    29-8 h169  | 129  7   a39   |
 | 1    9   f26   | 4    7     3    | 5    8   e26   |
 *----------------+-----------------+----------------|
 | 7    2    8    | 6    1     4    | 3    9    5    |
 | 6    14   5    | 9    3     7    | 8   c24   12   |
 | 3    14   9    | 2    5     8    | 7   c46  d16   |
 *----------------+-----------------+----------------|
 | 589  6    1    | 7    489   59   | 249 b23  b389  |
 | 589  58   34   | 138  6     2    | 49   15   7    |
 | 2    7    34   | 138  489   159  | 6    15  b89   |
 *---------------------------------------------------*


(8=39*)r2c29 - (9=382)b9p239 - (2=46)r56c8 - 6r6c9 = r3c9 - r3c3 = r2c3 - (6*9=18)b2p16 => -8 r2c5,r1c12 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: August 19, 2015

Postby bat999 » Wed Aug 19, 2015 2:30 pm

Hi
I wasn't able to find a one-stepper for this puzzle. :x
I can understand Phil's solution. 8-)
But I'll leave Steve's for others to peer review. :?
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Postby daj95376 » Wed Aug 19, 2015 6:06 pm

On another puzzle, a network splitting and joining of terms was represented as an XY-Wing. My solver returned a SIN that can be re-written as a network where there is a simple splitting and joining of terms. However, I'm still looking for an alternate way to handle the split/join.

Code: Select all
 SIN:  9r2c9  3r2c2  8r2c5  2r1c5  [r1]+1
 +-----------------------------------------------------+
 |  58   358  7    | d18  D289  169  | e129  236  4    |
 |  4   b38   26   |  5   c289  169  |  129  7   a39   |
 |  1    9    26   |  4    7    3    |  5    8    26   |
 |-----------------+-----------------+-----------------|
 |  7    2    8    |  6    1    4    |  3    9    5    |
 |  6    14   5    |  9    3    7    |  8    24   12   |
 |  3    14   9    |  2    5    8    |  7    46   16   |
 |-----------------+-----------------+-----------------|
 |  589  6    1    |  7    489  59   |  249  23   389  |
 |  589  58   34   |  138  6    2    |  49   15   7    |
 |  2    7    34   |  138  489  159  |  6    15   89   |
 +-----------------------------------------------------+
 # 56 eliminations remain

 3r2c9 = (3-8)r2c2 = 8r2c5 - (8        = 1)r1c4 \
                           -  2   r2c5 = 2 r1c5  - (12=9)r1c7  =>  -9 r2c9

Yes, it can be represented as a Kraken Cell on r1c7 -- almost identical to Phil's results.

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re:

Postby JC Van Hay » Wed Aug 19, 2015 7:09 pm

daj95376 wrote: I'm still looking for an alternate way to handle the split/join.
Here is your "chain" :
Code: Select all
3r2c9 3r2c2
      8r2c2 8r2c5
           -------------------
           |8r1c4 1r1c4      |
           |2r2c5       2r1c5|
           |      1r1c7 2r1c7| 9r1c7
           -------------------
It can be rewritten as a Kraken Cell on r1c7 as
Code: Select all
3r2c9=(3-8)r2c2=8r2c5-HWing[(8=1)r1c4-(1=*2)r1c7-2r1c5=2r2c5]=*9r1c7 => r2c9≠9
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re:

Postby blue » Wed Aug 19, 2015 7:46 pm

daj95376 wrote:On another puzzle, a network splitting and joining of terms was represented as an XY-Wing. My solver returned a SIN that can be re-written as a network where there is a simple splitting and joining of terms. However, I'm still looking for an alternate way to handle the split/join.

<snip>

Yes, it can be represented as a Kraken Cell on r1c7 -- almost identical to Phil's results.

Here's something using an "almost ALS-XY-Wing".
It's the same elimination as Phil's, and closely related to both your's and Phil's solutions.

2r2c5 = r1c5 - 2r1c7 =* [ALS-XY-Wing: pivot (*19)r1c7, pincers (18)r1c4, (389)r2c29] => r2c5<>8

Its Kraken-cell representation would be just like Phil's, but with the 3rd stream changed to "c. (9)r1c7 - (9=8)r2c29 - r2c5 "

Code: Select all
+---------------+-------------------+------------------+
| 58   358   7  | (18)  89(2)   169 | (129)  236  4    |
| 4    (38)  26 | 5     9-8(2)  169 | 129    7    (39) |
| 1    9     26 | 4     7       3   | 5      8    26   |
+---------------+-------------------+------------------+
| 7    2     8  | 6     1       4   | 3      9    5    |
| 6    14    5  | 9     3       7   | 8      24   12   |
| 3    14    9  | 2     5       8   | 7      46   16   |
+---------------+-------------------+------------------+
| 589  6     1  | 7     489     59  | 249    23   389  |
| 589  58    34 | 138   6       2   | 49     15   7    |
| 2    7     34 | 138   489     159 | 6      15   89   |
+---------------+-------------------+------------------+

--

P.S.: Changing Phil's 2nd stream as well -- to "b. (2)r1c7 - (2=8)r179c5 - r2c5" -- gives a Death Blossom pattern, with stem cell r1c7:

Code: Select all
1r1c7 - (1=8)r1c4
  ||
2r1c7 - (2=8)r179c5
  ||
9r1c7 - (9=8)r2c29

=> r2c5<>8

[ Non-overlapping petals too ... which is always nice ! ]
blue
 
Posts: 1054
Joined: 11 March 2013

Re: August 19, 2015

Postby daj95376 » Thu Aug 20, 2015 1:10 am

Thanks JC and blue for your ideas on using known patterns to help get around using the Kraken Cell.

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: August 19, 2015

Postby Marty R. » Thu Aug 20, 2015 5:29 am

bat999 wrote:Hi
I wasn't able to find a one-stepper for this puzzle. :x
I can understand Phil's solution. 8-)
But I'll leave Steve's for others to peer review. :?


You're not alone, if that's any consolation. After looking at the solutions I don't feel so bad. I thought there'd be some simple chains that I missed.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: August 19, 2015

Postby Leren » Thu Aug 20, 2015 5:57 am

There appear to be a number of Death Blossom patterns in this puzzle. Here's one that uses a different Stem cell and elimination.

Code: Select all
*--------------------------------------------------------------------------------*
|a58b    a358b    7        |a18b     289b    169b     | 129b    26-3    4        |
| 4       38      26       | 5       289    S169      | 129     7      c39       |
| 1       9       26       | 4       7       3        | 5       8       26       |
|--------------------------+--------------------------+--------------------------|
| 7       2       8        | 6       1       4        | 3       9       5        |
| 6       14      5        | 9       3       7        | 8       24      12       |
| 3       14      9        | 2       5       8        | 7       46      16       |
|--------------------------+--------------------------+--------------------------|
| 589     6       1        | 7       489     59       | 249     23      389      |
| 589     58      34       | 138     6       2        | 49      15      7        |
| 2       7       34       | 138     489     159      | 6       15      89       |
*--------------------------------------------------------------------------------*

3 Petal Death Blossom: Stem Cell r2c6 {169}; 

3 r1c8 - (3=1) r1c124   - (1) r2c6;

3 r1c8 -(3=6) r1c124567 - (6) r2c6;

3 r1c8 - (3=9) r2c9     - (9) r2c6; => - 3 r1c8; stte

The a & b petals overlap though - boohoo :( .

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012


Return to Puzzles