- Code: Select all
*-----------*
|...|6..|.42|
|..2|5..|3.7|
|.4.|7..|6..|
|---+---+---|
|...|.8.|.6.|
|13.|...|.94|
|.6.|.4.|...|
|---+---+---|
|..6|..3|.7.|
|9.7|..5|4..|
|31.|..2|...|
*-----------*
Play/Print this puzzle online
*-----------*
|...|6..|.42|
|..2|5..|3.7|
|.4.|7..|6..|
|---+---+---|
|...|.8.|.6.|
|13.|...|.94|
|.6.|.4.|...|
|---+---+---|
|..6|..3|.7.|
|9.7|..5|4..|
|31.|..2|...|
*-----------*
.------------------.---------------.------------------.
|d57(8) 579-8 1 | 6 3 89 | 589 4 2 |
| 6 9-8 2 | 5 19 4 | 3 18 7 |
|d5(8) 4 3 | 7 2 189 | 6 158 589 |
:------------------+---------------+------------------:
| 2457 257 459 | 139 8 179 | 125 6 135 |
| 1 3 8 | 2 5 6 | 7 9 4 |
|d257 6 59 | 139 4 179 | 1258 c23 1358 |
:------------------+---------------+------------------:
| 245-8 258 6 | 1489 19 3 | 12589 7 1589 |
| 9 a2(8) 7 | 18 6 5 | 4 b23 138 |
| 3 1 45 | 489 7 2 | 589 58 6 |
'------------------'---------------'------------------'
+-----------------------+--------------------+-----------------------+
| b578 579-8 1 | 6 3 89 | 589 4 2 |
| 6 9-8 2 | 5 19 4 | 3 18 7 |
| b58 4 3 | 7 2 189 | 6 158 589 |
+-----------------------+--------------------+-----------------------+
| a2457# 257 459 | 139 8 179 | 125 6 135 |
| 1 3 8 | 2 5 6 | 7 9 4 |
| b257* 6 59 | 139 4 179 | a1258# 23* 1358 |
+-----------------------+--------------------+-----------------------+
| 245-8* A258# 6 | 1489 19 3 | 12589 7 1589 |
| 9 B28* 7 | 18 6 5 | 4 23* 138 |
| 3 1 45 | 489 7 2 | 589 58 6 |
+-----------------------+--------------------+-----------------------+
Cenoman wrote:5-links oddagon in the 2's (*) with three guardians (#)
(2)r4c1,r6c7 - (257=8)r136c1
(2)r7c2 -(2=8)r8c2
=> -8 r12c2,r7c1; ste
SpAce wrote:I love seeing Oddagon solutions, because I've never spotted one myself. Could it be written as an AIC:
(8=2)r8c2 - r7c2 =[Oddagon]= (r4c1|r6c7) - (257=8)r136c1 => -8 r12c2, r7c1
?
Cenoman wrote:At first I have to give many thanks to SteveC, who made me aware of the oddagon pattern, and made me learn it.
.-----------------.---------------.------------------.
| 578 5789 1 | 6 3 89 | 589 4 2 |
| 6 89 2 | 5 19 4 | 3 18 7 |
| 58 4 3 | 7 2 189 | 6 158 589 |
:-----------------+---------------+------------------:
| 2457# 257* 459 | 139 8 179 | 125* 6 135 |
| 1 3 8 | 2 5 6 | 7 9 4 |
| 257 6 59 | 139 4 179 | 1258# 23* 1358 |
:-----------------+---------------+------------------:
| 2458 258# 6 | 1489 19 3 | 12589 7 1589 |
| 9 28* 7 | 18 6 5 | 4 23* 138 |
| 3 1 45 | 489 7 2 | 589 58 6 |
'-----------------'---------------'------------------'
.-----------------.---------------.------------------.
| 578 5789 1 | 6 3 89 | 589 4 2 |
| 6 89 2 | 5 19 4 | 3 18 7 |
| 58 4 3 | 7 2 189 | 6 158 589 |
:-----------------+---------------+------------------:
| 2457# 257* 459 | 139 8 179 | 125* 6 135 |
| 1 3 8 | 2 5 6 | 7 9 4 |
| 257* 6 59 | 139 4 179 | 1258# 23 1358 |
:-----------------+---------------+------------------:
| 2458* 258# 6 | 1489 19 3 | 12589* 7 1589 |
| 9 28 7 | 18 6 5 | 4 23 138 |
| 3 1 45 | 489 7 2 | 589 58 6 |
'-----------------'---------------'------------------'
.-----------------.---------------.------------------.
| 578 5789 1 | 6 3 89 | 589 4 2 |
| 6 89 2 | 5 19 4 | 3 18 7 |
| 58 4 3 | 7 2 189 | 6 158 589 |
:-----------------+---------------+------------------:
| 2457# 257* 459 | 139 8 179 | 125* 6 135 |
| 1 3 8 | 2 5 6 | 7 9 4 |
| 257* 6 59 | 139 4 179 | 1258# 23* 1358 |
:-----------------+---------------+------------------:
| 2458* 258# 6 | 1489 19 3 | 12589 7 1589 |
| 9 28* 7 | 18 6 5 | 4 23* 138 |
| 3 1 45 | 489 7 2 | 589 58 6 |
'-----------------'---------------'------------------'
Back to your question. Yes for this particular puzzle, you can write your AIC (similar to UR-AIC)
or (8=2)r8c2 - r7c2 == (r4c1|r6c7) - (257=8)r136c1 => -8 r12c2, r7c1 with symbol "==" meaning "derived strong link". (I'm reluctant to introduce in a logical expression a term that is not a logical variable, since its only value is FALSE).
I said "for this particular puzzle" because the guardians can be grouped into two nodes. When there are three or more guardians, you may need three chains (or more), then the kraken presentation is the clearest. Same concern for URs, DPs, BUGs, BUG-lite's
Anyhow, as often said on this forum, the important is substance. Choose your prefered presententation, provided it is legible and logically robust.
.-------------------.---------------.-------------------.
| 578 5789 1 | 6 3 89 | 589 4 2 |
| 6 d89 2 | 5 d19 4 | 3 c(1)8 7 |
|e(5)8 4 3 | 7 2 189 | 6 f158! 589 |
:-------------------+---------------+-------------------:
|a457-2# 257 b459 | 139 8 179 | 125 6 135 |
| 1 3 8 | 2 5 6 | 7 9 4 |
| 257* 6 59 | 139 4 179 | 1258 3-2 1358 |
:-------------------+---------------+-------------------:
| 2458* 258 6 | 1489 19 3 | 12589 7 1589 |
| 9 28* 7 | 18 6 5 | 4 23* 138 |
| 3 1 b45 | 489 7 2 | 589 c5(8) 6 |
'-------------------'---------------'-------------------'