AU 8-25-2008 tough

Post the puzzle or solving technique that's causing you trouble and someone will help

AU 8-25-2008 tough

Postby ncantoral » Mon Aug 25, 2008 2:02 am

Code: Select all
3 . .|4 . .|. . .
. 4 .|. . .|2 . .
8 . .|9 7 .|. 5 .
-----+-----+-----
. . 1|6 . .|. . .
. 5 .|. 9 .|. 6 .
. . .|. . 3|8 . .
-----+-----+-----
. 1 .|. 5 7|. . 6
. . 9|. . .|. 4 .
. . .|. . 9|. . 7


Code: Select all
-------------------------------------------------------------------
| 3      9      57    | 4      28     258   | 6      178    18    |
| 1      4      57    | 358    36     568   | 2      789    89    |
| 8      26     26    | 9      7      1     | 34     5      34    |
----------------------+---------------------+----------------------
| 2479   38     1     | 6      28     2458  | 34579  239    23459 |
| 247    5      38    | 278    9      248   | 1347   6      1234  |
| 24679  267    246   | 257    1      3     | 8      29     2459  |
----------------------+---------------------+----------------------
| 24     1      2348  | 238    5      7     | 39     2389   6     |
| 257    2378   9     | 1238   36     268   | 135    4      12358 |
| 256    2368   2368  | 1238   4      9     | 135    1238   7     |
-------------------------------------------------------------------


for the solvers again.
ncantoral
 
Posts: 26
Joined: 18 October 2007

Postby ttt » Mon Aug 25, 2008 5:47 am

Hi ncantoral,
I've just posted my solution for this puzzle on there (using AU notation:D )

ttt
ttt
 
Posts: 185
Joined: 20 October 2006
Location: vietnam

Postby daj95376 » Mon Aug 25, 2008 11:23 am

[Withdrawn: mindless]
Last edited by daj95376 on Mon Oct 06, 2008 5:15 am, edited 1 time in total.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby hobiwan » Mon Aug 25, 2008 1:46 pm

Picking up at daj95376's first candidate grid:

daj95376 wrote:
Code: Select all
 +-----------------------------------------------------------------------+
 |  3      9      57     |  4      28     258    |  6      178    18     |
 |  1      4      57     |  358    36     568    |  2      789    89     |
 |  8      26     26     |  9      7      1      |  34     5      34     |
 |-----------------------+-----------------------+-----------------------|
 |  2479   38     1      |  6      28     2458   |  34579  239    23459  |
 |  247    5      38     |  278    9      248    |  1347   6      1234   |
 |  24679  267    246    |  257    1      3      |  8      29     2459   |
 |-----------------------+-----------------------+-----------------------|
 |  24     1      2348   |  238    5      7      |  39     2389   6      |
 |  257    2378   9      |  1238   36     268    |  135    4      12358  |
 |  256    2368   2368   |  1238   4      9      |  135    1238   7      |
 +-----------------------------------------------------------------------+

Code: Select all
Forcing Net Verity => r5c4=7
  r5c4=2 (r8c6=2 r8c9<>2) (r5c9<>2) r6c4=7 r6c9=5 r4c9=2 (r4c7=4 r4c1<>4) (r4c9<>4) r6c8=9 r4c1=9 r4c7=7 r4c6=4 r6c4=5 r5c4=7
  r5c4=7 r5c4=7
  r5c4=8 (r8c6=8 r8c9<>8) r1c5=8 (r1c9=1 r5c9<>1) r2c9=8 r2c8=9 (r4c8<>9) r6c8=2 (r5c9<>2) r4c8=3 r5c9=4 r4c6=4 r6c4=5 r5c4=7
Forcing Net Verity => r3c9=3
  r5c7=1 (r5c7<>4) r4c7=7 r3c7=4 r3c9=3
  r5c9=1 (r5c9<>3) r1c9=8 r4c5=8 r4c2=3 (r4c8<>3) (r4c7<>3) r5c7=3 r3c9=3
Naked Single: r3c7=4
Hidden Single: r4c7=7
Hidden Single: r7c7=9
Locked Candidates Type 1 (Pointing): 5 in b6 => r8c9<>5
Naked Pair: 2,4 in r57c1 => r4689c1<>2, r46c1<>4
Naked Single: r4c1=9
Naked Triple: 3,8,2 in r4c258 => r4c69<>2, r4c6<>8

.------------------.------------------.------------------.
| 3     9     57   | 4     28    258  | 6     178   18   |
| 1     4     57   | 358   36    568  | 2     789   89   |
| 8     26    26   | 9     7     1    | 4     5     3    |
:------------------+------------------+------------------:
| 9     38    1    | 6     28    45   | 7     23    45   |
| 24    5     38   | 7     9     248  | 13    6     124  |
| 67    267   246  | 25    1     3    | 8     29    2459 |
:------------------+------------------+------------------:
| 24    1     2348 | 238   5     7    | 9     238   6    |
| 57    2378  9    | 1238  36    268  | 135   4     128  |
| 56    2368  2368 | 1238  4     9    | 135   1238  7    |
'------------------'------------------'------------------'
Almost Locked Set XY-Wing: A=r1c569 - {1258}, B=r4c5,r6c4 - {258}, C=r5c169 - {1248}, Y,Z=1,8, X=5 => r2c4,r4c6<>5
Forcing Chain Verity => r5c9=1
  r7c3=3 r5c7=3 r5c9=1
  r7c4=3 r2c4=8 r1c5=2 r4c8=2 r5c7=3 r5c9=1
  r7c8=3 r5c7=3 r5c9=1
Singles
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby Carcul » Sun Oct 05, 2008 3:20 pm

Code: Select all
*---------------------------------------------------------------*
 | 3      9      57   | 4      28     258  | 6      178    18    |
 | 1      4      57   | 358    36     568  | 2      789    89    |
 | 8      26     26   | 9      7      1    | 34     5      34    |
 |--------------------+--------------------+---------------------|
 | 2479   38     1    | 6      28     2458 | 34579  239    23459 |
 | 247    5      38   | 278    9      248  | 1347   6      1234  |
 | 24679  267    246  | 257    1      3    | 8      29     2459  |
 |--------------------+--------------------+---------------------|
 | 24     1      2348 | 238    5      7    | 39     2389   6     |
 | 257    2378   9    | 1238   36     268  | 135    4      12358 |
 | 256    2368   2368 | 1238   4      9    | 135    1238   7     |
 *---------------------------------------------------------------*

1) [r5c7]=1=[r5c9]-1-[r1c9]-8-[r1c5]-2-[r4c5]-8-[r4c2]-3-[r4c789]=3=
=[r5c7], => r5c7<>4,7.

2) [r4c9]=5=[r4c6]=4=[r5c6]-4-[r5c79|r46c8]-2,9-[r4c9], => r4c9<>2,9.

3) [r5c4]=7=[r6c4]=5=[r2c4]-5-[r2c3]-7-[r2c8]=7=[r1c8]=1=[r1c9]-1-
-[r5c9]=1=[r5c7]=3=[r4c8]-3-[r4c2]-8-[r4c5]-2-[r56c4], => r5c4, r6c4<>2.

4) [r5c4]=7=[r6c4](=5=[r4c6]=4=[r5c6]-4-[r5c9])=5=[r2c4]=3=[r2c5]
=6=[r2c6]-6-[r8c6]-8-[r58c9]-1-[r1c9]-8-[r1c5]=8=[r4c5]-8-[r5c4], => r5c4<>8.

5) [r8c7]=5=[r9c7]-5-[r9c1]-6-[r6c1]-7-[r6c2]=7|4=[r6c3]-4-[r6c9]=4=
[r5c9]=1=[r5c7](-1-[r8c7])=3=[r5c3]=8=[r5c6]-8-[r8c6]-6-[r8c5]-3-
-[r8c7], => r8c7<>1,3.

6) [r5c7]=1=[r5c9]-1-[r1c9]-8-[r1c5]=8=[r4c5]=2=[r4c8]=3=[r5c7], => r8c9<>1, r1c68<>8.

7) [r7c3]=4=[r6c3]-4-[r6c9]=4=[r5c9]=1=[r5c7]=3=[r9c7]-3-[r9c23]
=3|8=[r9c23]-8-[r7c3], => r7c3<>8.

8) [r9c3]=8=[r5c3]=3=[r5c7]=1=[r5c9]=4=[r6c9]-4-[r6c3]=4=[r7c3]-4-
-[r7c1]-2-[r48c2]-3,8-[r9c2]-2,6-[r9c3], => r9c3<>2,6.

9) BUG: r2c6=8 and the puzzle is solved.
Carcul
 
Posts: 724
Joined: 04 November 2005

Postby susume » Mon Oct 06, 2008 6:52 am

Carcul,

Sorry if I'm being dense -- in your first Nice Loop, how do you get [r4c789]=3=[r5c7] when there is still a candidate 3 in r5c9?
susume
 
Posts: 19
Joined: 03 August 2008

Postby Pat » Mon Oct 06, 2008 7:02 am

susume wrote:Carcul,

Sorry if I'm being dense -- in your first Nice Loop, how do you get [r4c789]=3=[r5c7] when there is still a candidate 3 in r5c9?

r5c9 became 1 right at the start of the loop
User avatar
Pat
 
Posts: 3462
Joined: 18 July 2005

Postby daj95376 » Mon Oct 06, 2008 9:21 am

susume wrote:Carcul,

Sorry if I'm being dense -- in your first Nice Loop, how do you get [r4c789]=3=[r5c7] when there is still a candidate 3 in r5c9?

Carcul doesn't announce when he's using a network. He also doesn't announce when he's embedding a UR/DP relationship. It makes his solutions sometimes more challenging than the original puzzle.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006


Return to Help with puzzles and solving techniques