.
No tridagon, but a lot of degenerate cyclic ones.
Solution similar to previous puzzle:
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 5 9 123 ! 123 8 7 ! 6 123 4 !
! 6 123 8 ! 9 1234 1234 ! 2357 1237 1357 !
! 123 7 4 ! 6 5 123 ! 2389 12389 138 !
+-------------------+-------------------+-------------------+
! 123 5 6 ! 8 1237 123 ! 4 1237 9 !
! 4 1238 9 ! 1235 1237 6 ! 23578 12378 13578 !
! 7 1238 123 ! 1235 12349 12349 ! 2358 6 1358 !
+-------------------+-------------------+-------------------+
! 1239 4 123 ! 123 12369 5 ! 3789 3789 3678 !
! 39 36 5 ! 7 369 8 ! 1 4 2 !
! 8 1236 7 ! 4 12369 1239 ! 39 5 36 !
+-------------------+-------------------+-------------------+
171 candidates.
hidden-pairs-in-a-row: r6{n4 n9}{c5 c6} ==> r6c6≠3, r6c6≠2, r6c6≠1, r6c5≠3, r6c5≠2, r6c5≠1
- Code: Select all
+-------------------+-------------------+-------------------+
! 5 9 123 ! 123 8 7 ! 6 123 4 !
! 6 123 8 ! 9 1234 1234 ! 2357 1237 1357 !
! 123 7 4 ! 6 5 123 ! 2389 12389 138 !
+-------------------+-------------------+-------------------+
! 123 5 6 ! 8 1237 123 ! 4 1237 9 !
! 4 1238 9 ! 1235 1237 6 ! 23578 12378 13578 !
! 7 1238 123 ! 1235 49 49 ! 2358 6 1358 !
+-------------------+-------------------+-------------------+
! 1239 4 123 ! 123 12369 5 ! 3789 3789 3678 !
! 39 36 5 ! 7 369 8 ! 1 4 2 !
! 8 1236 7 ! 4 12369 1239 ! 39 5 36 !
+-------------------+-------------------+-------------------+
***** STARTING ELEVEN_S REPLACEMENT TECHNIQUE *****
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
Trying in block 1
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to 3 digits 1, 2 and 3 in 3 cells r3c1, r2c2 and r1c3,
the resolution state is:
- Code: Select all
+----------------------+----------------------+----------------------+
! 5 9 3 ! 123 8 7 ! 6 123 4 !
! 6 2 8 ! 9 1234 1234 ! 12357 1237 12357 !
! 1 7 4 ! 6 5 123 ! 12389 12389 1238 !
+----------------------+----------------------+----------------------+
! 123 5 6 ! 8 1237 123 ! 4 1237 9 !
! 4 1238 9 ! 1235 1237 6 ! 123578 12378 123578 !
! 7 1238 123 ! 1235 49 49 ! 12358 6 12358 !
+----------------------+----------------------+----------------------+
! 1239 4 123 ! 123 12369 5 ! 123789 123789 123678 !
! 1239 1236 5 ! 7 12369 8 ! 123 4 123 !
! 8 1236 7 ! 4 12369 1239 ! 1239 5 1236 !
+----------------------+----------------------+----------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
finned-x-wing-in-rows: n1{r1 r4}{c8 c4} ==> r6c4≠1, r5c4≠1
biv-chain[3]: r1c8{n2 n1} - c4n1{r1 r7} - r7c3{n1 n2} ==> r7c8≠2
biv-chain[4]: r1c8{n2 n1} - c4n1{r1 r7} - c3n1{r7 r6} - b4n2{r6c3 r4c1} ==> r4c8≠2
biv-chain[4]: b2n2{r3c6 r1c4} - c4n1{r1 r7} - c3n1{r7 r6} - b4n2{r6c3 r4c1} ==> r4c6≠2
biv-chain[2]: r4n2{c5 c1} - c3n2{r6 r7} ==> r7c5≠2
biv-chain[3]: r4c6{n1 n3} - r3c6{n3 n2} - r1c4{n2 n1} ==> r2c6≠1
whip[4]: r4n2{c1 c5} - c4n2{r5 r1} - c4n1{r1 r7} - r7c3{n1 .} ==> r7c1≠2
biv-chain[3]: r7c1{n3 n9} - r8n9{c1 c5} - r8n6{c5 c2} ==> r8c2≠3
whip[4]: r8n9{c5 c1} - r7c1{n9 n3} - r7c4{n3 n2} - b7n2{r7c3 .} ==> r8c5≠1
z-chain[3]: r8n1{c9 c2} - c2n6{r8 r9} - c9n6{r9 .} ==> r7c9≠1
whip[4]: r1n2{c8 c4} - c4n1{r1 r7} - c3n1{r7 r6} - r6n2{c3 .} ==> r5c8≠2
whip[1]: c8n2{r3 .} ==> r3c7≠2, r3c9≠2
z-chain[5]: r8n9{c5 c1} - r7c1{n9 n3} - r7c4{n3 n1} - r1c4{n1 n2} - c6n2{r3 .} ==> r8c5≠2
t-whip[3]: r8n2{c9 c1} - r8n9{c1 c5} - r9n9{c6 .} ==> r9c7≠2
whip[5]: r7c3{n2 n1} - r6c3{n1 n2} - c7n2{r6 r5} - c4n2{r5 r1} - c4n1{r1 .} ==> r7c9≠2
whip[5]: c3n2{r7 r6} - c3n1{r6 r7} - c4n1{r7 r1} - c4n2{r1 r5} - c9n2{r5 .} ==> r7c7≠2
whip[5]: r8n1{c9 c2} - r8n6{c2 c5} - r7n6{c5 c9} - r7n7{c9 c7} - r7n8{c7 .} ==> r7c8≠1
whip[5]: r8n1{c9 c2} - r8n6{c2 c5} - r7n6{c5 c9} - r7n7{c9 c8} - r7n8{c8 .} ==> r7c7≠1
z-chain[4]: r4n2{c5 c1} - r6c3{n2 n1} - r7n1{c3 c4} - b2n1{r1c4 .} ==> r4c5≠1
z-chain[4]: r7n1{c5 c3} - c3n2{r7 r6} - r4c1{n2 n3} - r4c6{n3 .} ==> r9c6≠1
hidden-single-in-a-column ==> r4c6=1
whip[4]: c8n9{r3 r7} - r7c1{n9 n3} - r4n3{c1 c5} - c4n3{r5 .} ==> r3c8≠3
z-chain[5]: r7c1{n3 n9} - r8n9{c1 c5} - r9c6{n9 n2} - b2n2{r3c6 r1c4} - c4n1{r1 .} ==> r7c4≠3
whip[1]: c4n3{r6 .} ==> r4c5≠3, r5c5≠3
naked-pairs-in-a-block: b5{r4c5 r5c5}{n2 n7} ==> r6c4≠2, r5c4≠2
whip[1]: b5n2{r5c5 .} ==> r9c5≠2
naked-pairs-in-a-row: r7{c3 c4}{n1 n2} ==> r7c5≠1
finned-swordfish-in-columns: n2{c1 c5 c7}{r8 r4 r5} ==> r5c9≠2
biv-chain[3]: r5n2{c7 c5} - r4n2{c5 c1} - r4n3{c1 c8} ==> r5c7≠3
biv-chain[3]: b8n2{r9c6 r7c4} - b7n2{r7c3 r8c1} - r8n9{c1 c5} ==> r9c6≠9
singles ==> r6c6=9, r6c5=4
hidden-single-in-a-block ==> r2c6=4
biv-chain[4]: r3c9{n8 n3} - r3c6{n3 n2} - r9n2{c6 c9} - b9n6{r9c9 r7c9} ==> r7c9≠8
biv-chain[4]: r9n9{c5 c7} - b3n9{r3c7 r3c8} - r3n2{c8 c6} - b2n3{r3c6 r2c5} ==> r9c5≠3
biv-chain[4]: r9c6{n3 n2} - r3n2{c6 c8} - c8n9{r3 r7} - r7c1{n9 n3} ==> r7c5≠3, r9c2≠3
whip[1]: c2n3{r6 .} ==> r4c1≠3
stte