More precisely :
Let n be the maximum number of cells which can be determined in a puzzle* with this pattern :
- Code: Select all
x x x | x x x | x x x
x x x | . . . | x x x
x x x | . . . | x x x
------+-------+------
x . . | . . . | . . x
x . . | . . . | . . x
x . . | . . . | . . x
------+-------+------
x x x | . . . | x x x
x x x | . . . | x x x
x x x | x x x | x x x
* with at least one solution.I propose the following propositions or conjectures :
a) n can only have the values 0,1,2,3
b) if n=1, the calculated cell is in the central box
- Code: Select all
x x x | x x x | x x x
x x x | . . . | x x x
x x x | . . . | x x x
------+-------+------
x . . | . . . | . . x
x . . | . a . | . . x
x . . | . . . | . . x
------+-------+------
x x x | . . . | x x x
x x x | . . . | x x x
x x x | x x x | x x x
Example : 123456789597000436648000215200000004300040001400000002932000148864000957715894623 # 650 solutionsc) if n=2, the calculated cells are in the central box,
but not in the same row and not in the same column.[Edit : wrong, see RW's example in a next post]- Code: Select all
x x x | x x x | x x x
x x x | . . . | x x x
x x x | . . . | x x x
------+-------+------
x . . | . a . | . . x
x . . | b . . | . . x
x . . | . . . | . . x
------+-------+------
x x x | . . . | x x x
x x x | . . . | x x x
x x x | x x x | x x x
Example : 123456789947000615586000423700040006400600002600000004369000247854000361271364598 # 900 solutionsd) if n=3, the solutions are equivalent to this one :
- Code: Select all
x x x | x x x | x x x
x x x | . . . | x x x
x x x | . . . | x x x
------+-------+------
x . . | . a . | b . x
x . . | . b . | . . x
x . . | . . . | . . x
------+-------+------
x x x | . . . | x x x
x x x | . . . | x x x
x x x | x x x | x x x
Example : 123456789594000362768000415300040607400060008600000004917000546246000873835674291 # 408 solutions [code]
[Edit : wrong, the 3 solved cells can be in the central box ; see RW's example in a next post]Proofs or counter examples are welcome.
JPF