pjb wrote:I'd be grateful if you could demonstrate how the symmetry is used to make eliminations
Thanks, Phil
here is the first puzzle after Phil moves plus the naked pair 47 in column 5
- Code: Select all
- 478   569   348    |2478  69     1     |2378   59    78  
 6789  2     5689   |678   3      789   |1578   4     15789
 478   39    1      |5     47     2478  |2378   29    6
 ---------------------------------------------------------
 3     4     7      |126   1569   259   |156    8     159
 2     1569  569    |47    8      47    |156    1569  3
 169   8     569    |136   1569   359   |4      7     2
 ---------------------------------------------------------
 5     13    2348   |3478  47     6     |9      12    1478
 14689 7     4689   |148   2      458   |1568   3     1458
 48    16    2348   |9     15     3478  |278    156   478
At that point the easiest seems to use the symmetry constraint 9r1c5<->1r9c5
We can then either prove r1c6=6 or r9c5=5
1r9c5 =>9r1c5 - 9r1c8 =5r1c8 - 5r9c8 = 5r9c5 - 1r9c5  <> 1r9c5
after r1c5 = 6 and r9c5 = 5  
r2c6=9 r7c4=1 r4c9=9 r6c1=1 ....
EDIT  generally speaking, in my experience, once the limitations for the digits self mirror applied (in a central symmetry, this is only affecting r5c5, here given) the symmetry is best used in small contradiction chains skipping once or twice from a candidate to the mirror candidate.
Each contradiction chain as a mirror one, but the eliminations can also be duplicated using the symmetry.