April 3, 2017

Post puzzles for others to solve here.

April 3, 2017

Postby ArkieTech » Sun Apr 02, 2017 11:30 pm

Code: Select all
 *-----------*
 |6..|7..|..5|
 |.4.|...|.9.|
 |..2|..3|8..|
 |---+---+---|
 |2..|6..|3..|
 |...|..9|...|
 |..8|.5.|..7|
 |---+---+---|
 |..3|4..|6..|
 |.5.|...|.8.|
 |8..|..2|..1|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: April 3, 2017

Postby Leren » Mon Apr 03, 2017 12:08 am

Code: Select all
*---------------------------------------------------------------*
| 6     8     9      | 7     2     4      | 1     3      5      |
| 3     4     15     | 58    16    68     | 7     9      2      |
| 57    17    2      | 59    19    3      | 8     46     46     |
|--------------------+--------------------+---------------------|
| 2     9     15     | 6     47    78     | 3     15     48     |
| 57    1367  67     |c238   34    9      | 45    12456 d48-6   |
| 4     36    8      |b23    5     1      | 9    a26     7      |
|--------------------+--------------------+---------------------|
| 1     2     3      | 4     8     5      | 6     7      9      |
| 9     5     4      | 1     67    67     | 2     8      3      |
| 8     67    67     | 39    39    2      | 45    45     1      |
*---------------------------------------------------------------*

H2 Wing: (6=2) r6c8 - r6c4 = (2-8) r5c4 = (8) r5c9 => - 6 r5c9; stte

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: April 3, 2017

Postby Marty R. » Mon Apr 03, 2017 1:38 am

Code: Select all
+------------+-----------+--------------+
| 6  8    9  | 7   2  4  | 1  3     5   |
| 3  4    15 | 58  16 68 | 7  9     2   |
| 57 17   2  | 59  19 3  | 8  46    46  |
+------------+-----------+--------------+
| 2  9    15 | 6   47 78 | 3  15    48  |
| 57 1367 67 | 238 34 9  | 45 12456 468 |
| 4  36   8  | 23  5  1  | 9  26    7   |
+------------+-----------+--------------+
| 1  2    3  | 4   8  5  | 6  7     9   |
| 9  5    4  | 1   67 67 | 2  8     3   |
| 8  67   67 | 39  39 2  | 45 45    1   |
+------------+-----------+--------------+

Play this puzzle online at the Daily Sudoku site

Coloring (6), Kite hinged in b4 and extended: if Leren or Steve would like to check my notation, I'm not sure about terms 2-3 trying to establish the kite.
(6=236)r6c842-r5c3=r9c3-(6=75)b4p64-r3c1=r2c3-(5=8)r2c4--r2c6=r4c6-(8=4)r4c9-(4=6)r3c9=> -6r4c8
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: April 3, 2017

Postby SteveG48 » Mon Apr 03, 2017 2:46 am

Code: Select all
 *--------------------------------------------------------------------*
 | 6      8      9      | 7      2      4      | 1      3      5      |
 | 3      4      15     | 58     16     68     | 7      9      2      |
 | 57     17     2      | 59     19     3      | 8      46     46     |
 *----------------------+----------------------+----------------------|
 | 2      9      15     | 6      47     78     | 3      15     48     |
 |a57     167-3 a67     | 238   a34     9      |a45     12456  468    |
 | 4     b36     8      | 2-3    5      1      | 9      26     7      |
 *----------------------+----------------------+----------------------|
 | 1      2      3      | 4      8      5      | 6      7      9      |
 | 9      5      4      | 1      67     67     | 2      8      3      |
 | 8      67     67     | 39     39     2      | 45     45     1      |
 *--------------------------------------------------------------------*


(3=4567)r5c1357 - (6=3)r6c2 => -3 r5c2,r6c4 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: April 3, 2017

Postby SteveG48 » Mon Apr 03, 2017 3:04 am

Marty R. wrote:
Code: Select all
+------------+-----------+--------------+
| 6  8    9  | 7   2  4  | 1  3     5   |
| 3  4    15 | 58  16 68 | 7  9     2   |
| 57 17   2  | 59  19 3  | 8  46    46  |
+------------+-----------+--------------+
| 2  9    15 | 6   47 78 | 3  15    48  |
| 57 1367 67 | 238 34 9  | 45 12456 468 |
| 4  36   8  | 23  5  1  | 9  26    7   |
+------------+-----------+--------------+
| 1  2    3  | 4   8  5  | 6  7     9   |
| 9  5    4  | 1   67 67 | 2  8     3   |
| 8  67   67 | 39  39 2  | 45 45    1   |
+------------+-----------+--------------+

Play this puzzle online at the Daily Sudoku site

Coloring (6), Kite hinged in b4 and extended: if Leren or Steve would like to check my notation, I'm not sure about terms 2-3 trying to establish the kite.
(6=236)r6c842-r5c3=r9c3-(6=75)b4p64-r3c1=r2c3-(5=8)r2c4--r2c6=r4c6-(8=4)r4c9-(4=6)r3c9=> -6r4c8


Hi, Marty. First, I think your conclusion was meant to be -6 r3c8, not -6 r4c8.

On the chain, the only error is in your first term. You can't have 6 on both sides of an = sign. That would mean that if 6 isn't true in that cell or group if cells then it is true in the cell- a contradiction. Break it into 2 pieces:

(6=2)r6c8 - (2=36)r6c24 - 6r5c3 ....

You could actually eliminate the -6r5c3 = r9c3 - (6=75)b4p46 and just write - (6=75)b4p46 without the first two terms, but that's not an error.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: April 3, 2017

Postby Marty R. » Mon Apr 03, 2017 3:50 am

SteveG48 wrote:
Marty R. wrote:
Code: Select all
+------------+-----------+--------------+
| 6  8    9  | 7   2  4  | 1  3     5   |
| 3  4    15 | 58  16 68 | 7  9     2   |
| 57 17   2  | 59  19 3  | 8  46    46  |
+------------+-----------+--------------+
| 2  9    15 | 6   47 78 | 3  15    48  |
| 57 1367 67 | 238 34 9  | 45 12456 468 |
| 4  36   8  | 23  5  1  | 9  26    7   |
+------------+-----------+--------------+
| 1  2    3  | 4   8  5  | 6  7     9   |
| 9  5    4  | 1   67 67 | 2  8     3   |
| 8  67   67 | 39  39 2  | 45 45    1   |
+------------+-----------+--------------+

Play this puzzle online at the Daily Sudoku site

Coloring (6), Kite hinged in b4 and extended: if Leren or Steve would like to check my notation, I'm not sure about terms 2-3 trying to establish the kite.
(6=236)r6c842-r5c3=r9c3-(6=75)b4p64-r3c1=r2c3-(5=8)r2c4--r2c6=r4c6-(8=4)r4c9-(4=6)r3c9=> -6r4c8


Hi, Marty. First, I think your conclusion was meant to be -6 r3c8, not -6 r4c8.

On the chain, the only error is in your first term. You can't have 6 on both sides of an = sign. That would mean that if 6 isn't true in that cell or group if cells then it is true in the cell- a contradiction. Break it into 2 pieces:

(6=2)r6c8 - (2=36)r6c24 - 6r5c3 ....

You could actually eliminate the -6r5c3 = r9c3 - (6=75)b4p46 and just write - (6=75)b4p46 without the first two terms, but that's not an error.


Steve,

Thanks a lot for checking the notation.

"On the chain, the only error is in your first term. You can't have 6 on both sides of an = sign. That would mean that if 6 isn't true in that cell or group if cells then it is true in the cell- a contradiction. Break it into 2 pieces:"

I should've known that. I was thinking that r6c8 isn't a 6 so r6c2 IS a 6.

I was going to just say that due to the Kite r6c8 and r9c3 are pincers and just take it from there. But then thought I'd try to get the full Kite in there. The way I actually did the puzzle was to start transporting with r9c3.

"You could actually eliminate the -6r5c3 = r9c3 - (6=75)b4p46 and just write - (6=75)b4p46 without the first two terms," This was the main reason I wanted the notation checked. It didn't seem right to go from r5c3 to r9c3 and right back to r5c3. By skipping that it wouldn't show the full kite with transport starting with r9c3.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: April 3, 2017

Postby Cenoman » Mon Apr 03, 2017 9:59 am

A question to DP experts.
Code: Select all
 +-------------------+------------------+---------------------+
 |  6    8      9    |  7     2    4    |  1    3       5     |
 |  3    4      15   |  58    16   68   |  7    9       2     |
 |  57   17     2    |  59    19   3    |  8   *46     *46    |
 +-------------------+------------------+---------------------+
 |  2    9      15   |  6     47   78   |  3    15      48    |
 |  57   1367   67   |  238   34   9    | *45  *12456  *468   |
 |  4    36     8    |  23    5    1    |  9    26      7     |
 +-------------------+------------------+---------------------+
 |  1    2      3    |  4     8    5    |  6    7       9     |
 |  9    5      4    |  1     67   67   |  2    8       3     |
 |  8    67     67   |  39    39   2    | *45  *45      1     |
 +-------------------+------------------+---------------------+

Are the seven cells tagged with "*", a deadly pattern with digits 4, 5, 6 ?

Thanks in advance.
Cenoman.
Cenoman
Cenoman
 
Posts: 2977
Joined: 21 November 2016
Location: France

Re: April 3, 2017

Postby bat999 » Mon Apr 03, 2017 10:43 am

Code: Select all
.---------------.---------------.--------------------.
| 6    8     9  |  7     2   4  | 1     3        5   |
| 3    4     15 |  58    16  68 | 7     9        2   |
| 57  b17    2  |  59   b19  3  | 8     46       46  |
:---------------+---------------+--------------------:
| 2    9     15 |  6     47  78 | 3     15      c48  |
| 57   1367  67 |  238  a34  9  | 5-4   1256-4  c468 |
| 4   b36    8  | c23    5   1  | 9    c26       7   |
:---------------+---------------+--------------------:
| 1    2     3  |  4     8   5  | 6     7        9   |
| 9    5     4  |  1     67  67 | 2     8        3   |
| 8   b67    67 |  39   a39  2  | 45    45       1   |
'---------------'---------------'--------------------'
(4=9)r59c5 - (9=3)r369c2,r3c5 - (3=4)r45c9,r6c48 => -4 r5c78; stte
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: April 3, 2017

Postby Leren » Mon Apr 03, 2017 11:36 am

Cenoman wrote : Are the seven cells tagged with "*", a deadly pattern with digits 4, 5, 6 ?

I'd say the answer is yes. It's like two 4 cell DP's; one in digits 46 and one in digits 45 that have a common cell r5c8.

If you pick r3c8 = 4 and r3c9 = 6 you are forced into a 4 cell 46 DP in r35c89. On the other hand if you pick r3c8 = 6 and r3c9 = 4 you are forced into either a 4 cell 64 DP in r35c89 or a 4 cell 45 DP in r59c78.

In fact you can eliminate 45 from r5c8 straight away, as there are 3 cells with just 45 in r59c78. BTW there is also a 4 cell 67 DP in r59c23 so you can remove 67 from r5c2.

So I guess you are just left with a 46 DP in r45c89, so either r5c8 is 12 or r5c9 is 8.

You can learn a lot about all sorts of exotic DP's here.

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: April 3, 2017

Postby Ngisa » Mon Apr 03, 2017 1:24 pm

Code: Select all
+------------+-----------+--------------+
| 6  8    9  | 7   2  4  | 1  3     5   |
| 3  4    c15 | 58  b16 68 | 7  9     2   |
| d57 17   2  | 59  19 3  | 8  46    46  |
+------------+-----------+--------------+
| 2  9    15 | 6   a47 78 | 3  15-4   8-4  |
| e57 1367 67 | 238 3-4 9  | f54 12456 468 |
| 4  36   8  | 23  5  1  | 9  26    7   |
+------------+-----------+--------------+
| 1  2    3  | 4   8  5  | 6  7     9   |
| 9  5    4  | 1   b67 67 | 2  8     3   |
| 8  67   67 | 39  39 2  | 45 45    1   |
+------------+-----------+--------------+

(4=7)r4c5 - (7=1)r28c5 - (1=5)r2c3 - (5=7)r3c1 - (7=5)r5c1 - (5=4)r5c7 => - 4 r4c89, r5c5; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: April 3, 2017

Postby Sudtyro2 » Mon Apr 03, 2017 1:52 pm

Code: Select all
*----------------------------------------------------------*
| 6      8      9    | 7      2    4    |  1   3      5    |
| 3      4      15   | 58     16   68   |  7   9      2    |
| 57     17     2    | 59     19   3    |  8   46     46   |
|--------------------+------------------+------------------|
| 2      9      5-1  | 6      47   78   |  3  c15     48   |
| 57    a1367*  67*  | 238   b34   9    | c45  12456  468  |
| 4      36     8    | 23     5    1    |  9   26     7    |
|--------------------+------------------+------------------|
| 1      2      3    | 4      8    5    |  6   7      9    |
| 9      5      4    | 1      67   67   |  2   8      3    |
| 8      67*    67*  | 39     39   2    |  45  45     1    |
*----------------------------------------------------------*
ADP(67)r59c23, using internals.
[1=3]r5c2 - (3=4)r5c5 - (4=51)b6p24 => -1r4c3; stte
SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: April 3, 2017

Postby Cenoman » Mon Apr 03, 2017 2:12 pm

Leren wrote: I'd say the answer is yes

So was my own feeling. Thanks Leren, especially for the link. I had only this link http://sudopedia.enjoysudoku.com/Deadly_Pattern.html dealing with most frequent DP's and was in trouble with the 3rd criterion defining a DP.
For today's puzzle, the DP would yield the following path:
Code: Select all
 +-------------------+------------------+---------------------+
 |  6    8      9    |  7     2    4    |  1    3       5     |
 |  3    4      15   |  58    16   68   |  7    9       2     |
 |  57   17     2    |  59    19   3    |  8   *4-6    *46    |
 +-------------------+------------------+---------------------+
 |  2    9      15   |  6     47  c78   |  3   a15    Ab48    |
 |  57   1367   67   | d238   34   9    |*b45  *12456  *468   |
 |  4    36     8    | e23    5    1    |  9   f26      7     |
 +-------------------+------------------+---------------------+
 |  1    2      3    |  4     8    5    |  6    7       9     |
 |  9    5      4    |  1     67   67   |  2    8       3     |
 |  8    67     67   |  39    39   2    | *45  *45      1     |
 +-------------------+------------------+---------------------+

DP(456)r3c89, r5c789, r9c78 using externals (box 6) => -6 r3c8; stte
Code: Select all
(5)r4c8 - (5=8)b7p34 - r4c6 = (8-2)r5c4 = r6c4 - (2=6)r6c8 - 6r3c8
(4)r4c9 - (4=6)r3c9                                        - 6r3c8
(6)r6c8                                                    - 6r3c8

Congratulations to SteveC for his nice UR !

Cenoman
Cenoman
Cenoman
 
Posts: 2977
Joined: 21 November 2016
Location: France


Return to Puzzles