April 27, 2014

Post puzzles for others to solve here.

April 27, 2014

Postby ArkieTech » Sat Apr 26, 2014 10:57 pm

Code: Select all
 *-----------*
 |..4|.5.|16.|
 |..3|4..|.2.|
 |...|92.|...|
 |---+---+---|
 |.75|.4.|...|
 |...|...|64.|
 |...|..3|..1|
 |---+---+---|
 |..9|...|4..|
 |5..|8..|...|
 |...|.76|.3.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: April 27, 2014

Postby Leren » Sun Apr 27, 2014 12:15 am

Code: Select all
*--------------------------------------------------------------*
| 2789  289   4      | 3     5     78     | 1     6     789    |
| 789   1589  3      | 4     6     178    | 5789  2     5789   |
| 678   1568  1678   | 9     2     178    | 3     578   4      |
|--------------------+--------------------+--------------------|
| 1     7     5      | 6     4    b29     |a28   a89    3      |
| 3    c289  c28     | 257   1    c259    | 6     4     57-2   |
| 2469  2469  26     | 257   8     3      | 257   579   1      |
|--------------------+--------------------+--------------------|
| 2678  1268  9      | 125   3    b25     | 4     1578  25678  |
| 5     3     1267   | 8     9     4      | 27    17    267    |
| 248   1248  128    | 125   7     6      | 2589  3     2589   |
*--------------------------------------------------------------*

ALS XY Wing: (2=9) r4c78 - (9=5) r47c6 - (5=2) r5c236 => - 2 r5c9; lclste

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: April 27, 2014

Postby SteveG48 » Sun Apr 27, 2014 1:11 am

Code: Select all
 *--------------------------------------------------------------------*
 | 2789   289    4      | 3      5      78     | 1      6      789    |
 | 789    1589   3      | 4      6      178    | 5789   2      5789   |
 | 678    1568   1678   | 9      2      178    | 3      578    4      |
 *----------------------+----------------------+----------------------|
 | 1      7      5      | 6      4     b29     |a28     89     3      |
 | 3     d289   d28     | 257    1     c259    | 6      4     e57-2   |
 | 2469   2469   26     | 257    8      3      | 257    579    1      |
 *----------------------+----------------------+----------------------|
 | 2678   1268   9      | 125    3      25     | 4      1578  f25678  |
 | 5      3      1267   | 8      9      4      | 7-2    17    f267    |
 | 248    1248   128    | 125    7      6      | 589-2  3     f2589   |
 *--------------------------------------------------------------------*


(2)r4c7 = (2-9)r4c6 = r5c6 - (9=28)r5c23 - (2)r5c9 = (2)r789c9 => -2 r89c7,r5c9 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: April 27, 2014

Postby Leren » Sun Apr 27, 2014 1:31 am

Hmmm ... I could have said : (2=9) r4c78 - (9=5) r47c6 - (5=2) r5c236 - r5c9 = r789c9 => - 2 r5c9, r89c7; stte

Is that cheating ? :lol:

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: April 27, 2014

Postby blue » Sun Apr 27, 2014 5:56 am

Leren wrote:Hmmm ... I could have said : (2=9) r4c78 - (9=5) r47c6 - (5=2) r5c236 - r5c9 = r789c9 => - 2 r5c9, r89c7; stte

Is that cheating ? :lol:

Maybe this instead ?

Code: Select all
      2r6c4 ------------------------------
     //                                    \
2r6c7                                       2r4c6 = 2r4c7
     \\                                    /
      2r6c123 -(2=89)r5c23 - 9r5c6 = 9r4c6

 => r5c9<>2,r89c7<>2; stte
blue
 
Posts: 1045
Joined: 11 March 2013

Re: April 27, 2014

Postby daj95376 » Sun Apr 27, 2014 4:21 pm

_

Since blue opened the door to networks, I'll contribute this from my solver.

Code: Select all
 +-----------------------------------------------------------------------+
 |  2789   289    4      |  3      5      78     |  1      6      789    |
 |  789    1589   3      |  4      6      178    |  5789   2      5789   |
 |  678    1568   1678   |  9      2      178    |  3      578    4      |
 |-----------------------+-----------------------+-----------------------|
 |  1      7      5      |  6      4      29     |  28     89     3      |
 |  3      289    28     |  257    1      259    |  6      4      257    |
 |  2469   2469   26     |  257    8      3      |  257    579    1      |
 |-----------------------+-----------------------+-----------------------|
 |  2678   1268   9      |  125    3      25     |  4      1578   25678  |
 |  5      3      1267   |  8      9      4      |  27     17     267    |
 |  248    1248   128    |  125    7      6      |  2589   3      2589   |
 +-----------------------------------------------------------------------+
 # 96 eliminations remain

 (2=7)r8c7 - r8c3  = r3c3 - r3c8 = 7r6c8 - (7=25)r5c9,r6c7  =>  -2 r4c7
           - r78c8 _____________/
_

In the spirit of extending chains:

Code: Select all
 (2=7)r8c7 - r8c3  = r3c3 - r3c8 = 7r6c8 - (7=25)r5c9,r6c7 - ...
           - r78c8 _____________/

 ... 2r4c7 = (2-9)r4c6 = r5c6 - (9=28)r5c23 - 2r5c9 = 2r789c9 - loop
_

Since I'm poor at resolving network loops, I'll stick with the original elimination.

_
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: April 27, 2014

Postby JC Van Hay » Sun Apr 27, 2014 5:48 pm

Code: Select all
+--------------------+-------------+---------------------+
| 2789  289   4      | 3    5  78  | 1     6       789   |
| 789   1589  3      | 4    6  178 | 5789  2       5789  |
| 678   1568  168(7) | 9    2  178 | 3     58(7)   4     |
+--------------------+-------------+---------------------+
| 1     7     5      | 6    4  29  | (28)  -8(9)   3     |
| 3     289   28     | 257  1  259 | 6     4       257   |
| 2469  2469  26     | 257  8  3   | 257   5(79)   1     |
+--------------------+-------------+---------------------+
| 2678  1268  9      | 125  3  25  | 4     158(7)  25678 |
| 5     3     126(7) | 8    9  4   | (27)  1(7)    267   |
| 248   1248  128    | 125  7  6   | 2589  3       2589  |
+--------------------+-------------+---------------------+
9r4c8=(9-7)r6c8=*FXWing(7)[r87c8=*r3c8-r3c3=r8c3]-(7=28)r87c7 :=> -8r4c8
5 Singles; HP(57-2)r5c49; ste
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: April 27, 2014

Postby Marty R. » Sun Apr 27, 2014 7:42 pm

Code: Select all
+----------------+-----------+-----------------+
| 2789 289  4    | 3   5 78  | 1    6    789   |
| 789  1589 3    | 4   6 178 | 5789 2    5789  |
| 678  1568 1678 | 9   2 178 | 3    578  4     |
+----------------+-----------+-----------------+
| 1    7    5    | 6   4 29  | 28   89   3     |
| 3    289  28   | 257 1 259 | 6    4    257   |
| 2469 2469 26   | 257 8 3   | 257  579  1     |
+----------------+-----------+-----------------+
| 2678 1268 9    | 125 3 25  | 4    1578 25678 |
| 5    3    1267 | 8   9 4   | 27   17   267   |
| 248  1248 128  | 125 7 6   | 2589 3    2589  |
+----------------+-----------+-----------------+

Play this puzzle online at the Daily Sudoku site

Same elimination as some solutions above.

2r4c7=(2-9)r4c6=r5c6-(9=28)r5c23=>r5c9<>2

Steve: did you go too far or did I stop too soon?
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: April 27, 2014

Postby SteveG48 » Mon Apr 28, 2014 1:00 pm

Marty, your solution is fine, but it only gives lclste. Extending it gives more eliminations and stte. My prime target was r8c7. The others eliminations were a bonus.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: April 27, 2014

Postby Marty R. » Mon Apr 28, 2014 2:38 pm

SteveG48 wrote:Marty, your solution is fine, but it only gives lclste. Extending it gives more eliminations and stte. My prime target was r8c7. The others eliminations were a bonus.


Steve,

OK, I understand. I'm probably in the minority in that I don't pay attention to the stte or lcste, as I consider the puzzle done once no more advanced moves are needed. However, I'm not sure of the meaning of your prime target was r8c7. My solution did take care of that cell.

Cheers,
Marty
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: April 27, 2014

Postby SteveG48 » Mon Apr 28, 2014 4:21 pm

Marty R. wrote:
SteveG48 wrote:Marty, your solution is fine, but it only gives lclste. Extending it gives more eliminations and stte. My prime target was r8c7. The others eliminations were a bonus.


Steve,

OK, I understand. I'm probably in the minority in that I don't pay attention to the stte or lcste, as I consider the puzzle done once no more advanced moves are needed. However, I'm not sure of the meaning of your prime target was r8c7. My solution did take care of that cell.

Cheers,
Marty


When I say that my prime target was r8c7, I mean that my intention from the outset was to get an elimination in that cell. The others were a bonus. Your solution took care of r5c9.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: April 27, 2014

Postby Marty R. » Mon Apr 28, 2014 5:11 pm

SteveG48 wrote:
Marty R. wrote:
SteveG48 wrote:Marty, your solution is fine, but it only gives lclste. Extending it gives more eliminations and stte. My prime target was r8c7. The others eliminations were a bonus.


Steve,

OK, I understand. I'm probably in the minority in that I don't pay attention to the stte or lcste, as I consider the puzzle done once no more advanced moves are needed. However, I'm not sure of the meaning of your prime target was r8c7. My solution did take care of that cell.

Cheers,
Marty


When I say that my prime target was r8c7, I mean that my intention from the outset was to get an elimination in that cell. The others were a bonus. Your solution took care of r5c9.


Steve, are we just talking about the difference between lcste and stte? Yes, my solution took care of r5c9, but also hits r8c7 because the first elimination locks the r9 2s in box 9. If a stranger or beginner read this exchange, (s)he might not understand that it involves the lcste thing as opposed to an actual solution.

Marty
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: April 27, 2014

Postby SteveG48 » Mon Apr 28, 2014 6:25 pm

Marty R. wrote:Steve, are we just talking about the difference between lcste and stte? Yes, my solution took care of r5c9, but also hits r8c7 because the first elimination locks the r9 2s in box 9. If a stranger or beginner read this exchange, (s)he might not understand that it involves the lcste thing as opposed to an actual solution.

Marty


Yes, of course. I'm not even talking about the difference between lclste and stte. I'm just talking about the eliminations in the first move. :)
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida


Return to Puzzles