April 21, 2019

Post puzzles for others to solve here.

April 21, 2019

Postby ArkieTech » Sun Apr 21, 2019 11:03 am

Code: Select all
 *-----------*
 |.4.|..2|..5|
 |..9|.7.|.1.|
 |6..|1..|2..|
 |---+---+---|
 |..5|...|..2|
 |.7.|.2.|.8.|
 |3..|...|6..|
 |---+---+---|
 |..8|..6|..9|
 |.1.|.5.|8..|
 |5..|8..|.3.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: April 21, 2019

Postby Leren » Sun Apr 21, 2019 11:15 am

Code: Select all
*-------------------------------------------*
| 1 4  3 |a69     8   2    | 79  b679  5    |
| 2 58 9 | 456    7   45   | 34   1    3468 |
| 6 58 7 | 1      3   459  | 2    49   48   |
|--------+-----------------+----------------|
| 8 9  5 | 347    6   1347 | 13   47   2    |
| 4 7  6 | 35-9   2   1359 | 59   8    13   |
| 3 2  1 | 457-9 f49  8    | 6    59  e47   |
|--------+-----------------+----------------|
| 7 3  8 | 24     14  6    | 145  245  9    |
| 9 1  4 | 237    5   37   | 8   c267 d67   |
| 5 6  2 | 8      149 479  | 147  3    147  |
*-------------------------------------------*

(9=6) r1c4 - r1c8 = r8c8 - (6=7) r8c9 - (7=4) r6c9 - (4=9) r6c5 => - 9 r56c4; stte, or, just for fun :

Code: Select all
*------------------------------------------*
| 1 4  3 | 69    8    2    | 79  679  5    |
| 2 58 9 | 456   7    45   | 34  1    3468 |
| 6 58 7 | 1     3    459  | 2   49   48   |
|--------+-----------------+---------------|
| 8 9  5 | 347   6    1347 | 13  47   2    |
| 4 7  6 | 359   2    1359 | 59  8    13   |
| 3 2  1 | 4579 c49   8    | 6   59  c47   |
|--------+-----------------+---------------|
| 7 3  8 |b24    14   6    | 145 245  9    |
| 9 1  4 |b237   5   b37   | 8   267  6-7  |
| 5 6  2 | 8    S149  479  |a147 3   a147  |
*------------------------------------------*

3 Petal Death Blossom: Stem Cell r9c5 {149};

(7=1) r9c79       - (1) r9c5;

(7=4) r7c4, r8c46 - (4) r9c5;

(7=9) r6c59       - (9) r9c5 ; => - 7 r8c9; stte

Leren
Leren
 
Posts: 5118
Joined: 03 June 2012

Re: April 21, 2019

Postby SpAce » Sun Apr 21, 2019 12:36 pm

Code: Select all
.----------.------------------.----------------------.
| 1  4   3 | 69     8    2    |  79     679    5     |
| 2  58  9 | 456    7    45   |  34     1      3468  |
| 6  58  7 | 1      3    459  |  2      49     48    |
:----------+------------------+----------------------:
| 8  9   5 | 347    6    1347 |  1347   47     2     |
| 4  7   6 | 359    2    1359 |  1359   8      13    |
| 3  2   1 | 4579  a49   8    |  6      4579  a4(7)  |
:----------+------------------+----------------------:
| 7  3   8 | 24     14   6    |  145    245    9     |
| 9  1   4 | 237    5    37   |  8      267    6-7   |
| 5  6   2 | 8     b149  479  | b14(7)  3     b14(7) |
'----------'------------------'----------------------'

(7=49)r6c95 - (9=147)r9c579 => -7 r8c9; stte

Added (because of a recent discussion with SteveC about almost-AICs):

Code: Select all
.----------.--------------------.------------------------.
| 1  4   3 |  69     8     2    |  79     679       5    |
| 2  58  9 |  456    7     45   |  34     1         3468 |
| 6  58  7 |  1      3     459  |  2      49        48   |
:----------+--------------------+------------------------:
| 8  9   5 |  347    6     1347 |  13     47        2    |
| 4  7   6 |  359    2     1359 |  59     8         13   |
| 3  2   1 |  4579  B49    8    |  6      59       B47   |
:----------+--------------------+------------------------:
| 7  3   8 | b24     14    6    |  145    245       9    |
| 9  1   4 | b237    5     37   |  8    a(2)7-6  Ad(6)7  |
| 5  6   2 |  8    Cc14#9  479  | d147    3        d147  |
'----------'--------------------'------------------------'

(6=7)r8c9 - (7=49)r6c59 - (#9)r9c5 = [(2)r8c8 = (24)r87c4 - (4=#=1)r9c5 - (1=476)b9p796] => -6 r8c8; stte

...which is an almost-AIC (*) version of this Kraken (the first solution I found for this puzzle):

(1)r9c5 - (1=476)b9p796
||
(4)r9c5 - (4=2)r7c4 - r8c4 = (2)r8c8
||
(9)r9c5 - (9=47)r6c59 - (7=6)r8c9

=> -6 r8c8; stte

(*) The almost-AIC is just the bracketed chain part + the obstacle (#9)r9c5. The full chain is of course a real AIC; nothing almost about it.
Last edited by SpAce on Sun Apr 21, 2019 3:03 pm, edited 4 times in total.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: April 21, 2019

Postby Ngisa » Sun Apr 21, 2019 2:28 pm

Code: Select all
+----------------+------------------------+------------------------+
| 1     4      3 |e69        8       2    |d79       c679     5    |
| 2     58     9 | 456       7       45   | 34        1      b3468 |
| 6     58     7 | 1         3       459  | 2         49      48   |
+----------------+------------------------+------------------------+
| 8     9      5 | 347       6       1347 | 13        47      2    |
| 4     7      6 |f359       2      f1359 |e59        8       13   |
| 3     2      1 |f4579     g9-4     8    | 6         59     a47   |
+----------------+------------------------+------------------------+
| 7     3      8 | 24        14      6    | 145       245     9    |
| 9     1      4 | 237       5       37   | 8         267    a67   |
| 5     6      2 | 8         149     479  | 147       3       147  |
+----------------+------------------------+------------------------+

(4=76)r68c9 - (6)r2c9 = (6-79)r1c8 = (7-9)r1c7 = r1c4|r5c7 - r56c4|r5c6 = (9)r6c5 => - 4r6c5; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: April 21, 2019

Postby Cenoman » Sun Apr 21, 2019 5:09 pm

Code: Select all
 +-----------------+----------------------+---------------------+
 |  1    4    3    | b69     8     2      |  79   a679#  5      |
 |  2    58   9    |  456    7     45     |  34    1     3468   |
 |  6    58   7    |  1      3    c459*   |  2   Cd49*   48     |
 +-----------------+----------------------+---------------------+
 |  8    9    5    |  347    6     1347   |  13    7-4   2      |
 |  4    7    6    | a359#   2     1359*  |  59*   8     13     |
 |  3    2    1    |  4579   49    8      |  6    C59*   47     |
 +-----------------+----------------------+---------------------+
 |  7    3    8    | B24    B14    6      |  145  C245   9      |
 |  9    1    4    |  237    5     37     |  8     267   67     |
 |  5    6    2    |  8     B149  A479#   |  147   3     147    |
 +-----------------+----------------------+---------------------+

In the 9s, 5-link oddagon (*) with three guardians
(9)r1c8|r6c4 - r1c4 = r3c6 - (9=4)r3c8
(9)r9c6 - (914=2)b8p128 - (259=4)r367c8
=> -4 r4c8; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: April 21, 2019

Postby SteveG48 » Sun Apr 21, 2019 5:46 pm

Code: Select all
 *-----------------------------------------------------------*
 | 1     4     3     | 69    8     2     | 79    679   5     |
 | 2     58    9     | 456   7     45    |d34    1    d3468  |
 | 6     58    7     | 1     3     45-9  | 2    d49   d48    |
 *-------------------+-------------------+-------------------|
 | 8     9     5     | 347   6     1347  | 13    47    2     |
 | 4     7     6     | 359   2     1359  | 59    8     13    |
 | 3     2     1     | 4579 b49    8     | 6     59   c47    |
 *-------------------+-------------------+-------------------|
 | 7     3     8     | 24    14    6     | 145   245   9     |
 | 9     1     4     | 237   5     37    | 8     267  c67    |
 | 5     6     2     | 8    b149  a479   | 147   3     147   |
 *-----------------------------------------------------------*


9r9c6 = (49)r69c5 - (4=67)r68c9 - (6=3489)b3p4689 => -9 r3c6 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4481
Joined: 08 November 2013
Location: Orlando, Florida

Re: April 21, 2019

Postby SteveG48 » Sun Apr 21, 2019 5:57 pm

Ngisa wrote:
Code: Select all
+----------------+------------------------+------------------------+
| 1     4      3 |e69        8       2    |d79       c679     5    |
| 2     58     9 | 456       7       45   | 34        1      b3468 |
| 6     58     7 | 1         3       459  | 2         49      48   |
+----------------+------------------------+------------------------+
| 8     9      5 | 347       6       1347 | 13        47      2    |
| 4     7      6 |f359       2      f1359 |e59        8       13   |
| 3     2      1 |f4579     g9-4     8    | 6         59     a47   |
+----------------+------------------------+------------------------+
| 7     3      8 | 24        14      6    | 145       245     9    |
| 9     1      4 | 237       5       37   | 8         267    a67   |
| 5     6      2 | 8         149     479  | 147       3       147  |
+----------------+------------------------+------------------------+

(4=76)r68c9 - (6)r2c9 = (6-79)r1c8 = (7-9)r1c7 = r1c4|r5c7 - r56c4|r5c6 = (9)r6c5 => - 4r6c5; stte

Clement


Nice one, Clement. However, you need to change r1c4|r5c7 to r1c4&r5c7 . Your solution depends on 9 being true in both those cells, not just either of those cells.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4481
Joined: 08 November 2013
Location: Orlando, Florida

Re: April 21, 2019

Postby SpAce » Sun Apr 21, 2019 7:24 pm

SteveG48 wrote:9r9c6 = (49)r69c5 - (4=67)r68c9 - (6=3489)b3p4689 => -9 r3c6 ; stte

Hi Steve. I think you need a comma (or a split-node) there. (Don't worry -- I keep forgetting that myself all the time.)
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: April 21, 2019

Postby Sudtyro2 » Sun Apr 21, 2019 8:46 pm

SpaCe wrote: Added (because of a recent discussion with SteveC about almost-AICs):
Code: Select all
.----------.--------------------.------------------------.
| 1  4   3 |  69     8     2    |  79     679       5    |
| 2  58  9 |  456    7     45   |  34     1         3468 |
| 6  58  7 |  1      3     459  |  2      49        48   |
:----------+--------------------+------------------------:
| 8  9   5 |  347    6     1347 |  13     47        2    |
| 4  7   6 |  359    2     1359 |  59     8         13   |
| 3  2   1 |  4579  B49    8    |  6      59       B47   |
:----------+--------------------+------------------------:
| 7  3   8 | b24     14    6    |  145    245       9    |
| 9  1   4 | b237    5     37   |  8    a(2)7-6  Ad(6)7  |
| 5  6   2 |  8    Cc14#9  479  | d147    3        d147  |
'----------'--------------------'------------------------'

(6=7)r8c9 - (7=49)r6c59 - (#9)r9c5 = [(2)r8c8 = (24)r87c4 - (4=#=1)r9c5 - (1=476)b9p796] => -6 r8c8; stte

...which is an almost-AIC (*) version of this Kraken (the first solution I found for this puzzle):

(1)r9c5 - (1=476)b9p796
||
(4)r9c5 - (4=2)r7c4 - r8c4 = (2)r8c8
||
(9)r9c5 - (9=47)r6c59 - (7=6)r8c9

=> -6 r8c8; stte

(*) The almost-AIC is just the bracketed chain part + the obstacle (#9)r9c5. The full chain is of course a real AIC; nothing almost about it.

Just noticed that your 3-value Kraken SIS has digit 6r8c9 common to both the top and bottom rows. That makes it eligible for a DAJ-based Kraken Lasso. Per my lead-off notes in yesterday's puzzle, one can therefore form the following single-sequence chain:
F = .. - A = [D = .. - B = C - .. = D] => -EE
F=2r8c8
A=4r9c5
D=6r8c9
B=1r9c5
C=9r9c5
EE=6r8c8
Would you agree?

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: April 21, 2019

Postby SteveG48 » Sun Apr 21, 2019 8:52 pm

SpAce wrote:
SteveG48 wrote:9r9c6 = (49)r69c5 - (4=67)r68c9 - (6=3489)b3p4689 => -9 r3c6 ; stte

Hi Steve. I think you need a comma (or a split-node) there. (Don't worry -- I keep forgetting that myself all the time.)


Umm, yes. Thanks. I think I would prefer to split the node.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4481
Joined: 08 November 2013
Location: Orlando, Florida

Re: April 21, 2019

Postby SpAce » Sun Apr 21, 2019 9:19 pm

Sudtyro2 wrote:Just noticed that your 3-value Kraken SIS has digit 6r8c9 common to both the top and bottom rows. That makes it eligible for a DAJ-based Kraken Lasso. Per my lead-off notes in yesterday's puzzle, one can therefore form the following single-sequence chain:
F = .. - A = [D = .. - B = C - .. = D] => -EE
...
Would you agree?

Yes. I noticed it too (after I wrote it), but I'm glad I wrote it the other way because it shows that it's not a requirement for the concept to work. Below you'll find an example with no such possibility in the first place. A three-way kraken can be split three different ways, and it doesn't matter which branch-pair is nested. In other words, this kraken:

Code: Select all
a - ... = A - x
||
b - ... = B - x
||
c - ... = C - x

=> -x

...can be written as any of these AICs:

A = ... - a = [B = ... - (b=c) - ... = C] => - x
B = ... - b = [A = ... - (a=c) - ... = C] => - x
C = ... - c = [A = ... - (a=b) - ... = B] => - x

All of them prove the same thing: {A B C} is a derived SIS and any candidate they all see can be eliminated.

A four-way kraken needs another level of nesting (and so on for even bigger krakens), but the concept is still valid:

Code: Select all
a - ... = A - x
||
b - ... = B - x
||
c - ... = C - x
||
d - ... = D - x

=> -x

A = ... - a = [B = ... - b = [C = ... - (c=d) - ... = D]] => -x

(Just showing one possibility. With each level of nesting it gets harder and harder to read, however, so the kraken is usually preferable.)

PS. Here's Leren's Death Blossom (very close to my kraken but with a simpler elimination) written as an AIC:

Code: Select all
.----------.-----------------------.---------------------.
| 1  4   3 |  69       8      2    |  79     679   5     |
| 2  58  9 |  456      7      45   |  34     1     3468  |
| 6  58  7 |  1        3      459  |  2      49    48    |
:----------+-----------------------+---------------------:
| 8  9   5 |  347      6      1347 |  13     47    2     |
| 4  7   6 |  359      2      1359 |  59     8     13    |
| 3  2   1 |  4579    a49     8    |  6      59   a4(7)  |
:----------+-----------------------+---------------------:
| 7  3   8 | c24       14     6    |  145    245   9     |
| 9  1   4 | c23(7)    5     c3(7) |  8      267   6-7   |
| 5  6   2 |  8      Bb49#1   479  | A14(7)  3    A14(7) |
'----------'-----------------------'---------------------'

As Kraken: Show
(1)r9c5 - (1=47)r9c79
||
(4)r9c5 - (4=237)b8p146
||
(9)r9c5 - (9=47)r6c59

=> -7 r8c9

Notice that the five end point candidates proving the derived SIS {7r6c9 7r8c46 7r9c79} are all unique, so no "lassoing" possibility. Yet there's no problem to write it as an AIC (one of the three possibilities shown):

(7=41)r9c79 - (#1)r9c5 = [(7=49)r6c95 - (9=#=4)r9c5 - (4=237)b8p146] => -7 r8c9

So, why limit oneself to the apparently DNL-based "lasso"?
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017


Return to Puzzles