- Code: Select all
*-----------*
|5..|2..|..1|
|..9|...|7..|
|.43|..7|62.|
|---+---+---|
|...|..3|8..|
|.6.|1.8|.9.|
|..7|4..|...|
|---+---+---|
|.86|..4|35.|
|..1|...|4..|
|7..|9..|..8|
*-----------*
Play/Print this puzzle online
*-----------*
|5..|2..|..1|
|..9|...|7..|
|.43|..7|62.|
|---+---+---|
|...|..3|8..|
|.6.|1.8|.9.|
|..7|4..|...|
|---+---+---|
|.86|..4|35.|
|..1|...|4..|
|7..|9..|..8|
*-----------*
5 7 8 | 2 cD34 6 | 9 C34 1
6 2 9 | 35 345 1 | 7 8 34
1 4 3 | 8 9 7 | 6 2 5
------------------------+----------------------+---------------------
49 19 *25 | 56 *a256 3 | 8 B14 7
34 6 *25 | 1 7 8 |*25 9 34
8 13 7 | 4 *25 9 |*A125 136 26
------------------------+----------------------+---------------------
29 8 6 | 7 1 4 | 3 5 29
239 359 1 | 36 8 25 | 4 7 269
7 35 4 | 9 b36 25 | 12 16 8
*--------------------------------------------------*
| 5 7 8 | 2 4-3 6 | 9 a34 1 |
| 6 2 9 | 35 345 1 | 7 8 34 |
| 1 4 3 | 8 9 7 | 6 2 5 |
*----------------+----------------+----------------|
| 49 19 25 | 56 256 3 | 8 a14 7 |
| 34 6 25 | 1 7 8 | 25 9 34 |
| 8 13 7 | 4 25 9 | 125 136 26 |
*----------------+----------------+----------------|
| 29 8 6 | 7 1 4 | 3 5 29 |
| 239 359 1 | 36 8 25 | 4 7 269 |
| 7 35 4 | 9 b36 25 | 12 a16 8 |
*--------------------------------------------------*
+------------+-----------+-------------+
| 5 7 8 | 2 34 6 | 9 34 1 |
| 6 2 9 | 35 345 1 | 7 8 34 |
| 1 4 3 | 8 9 7 | 6 2 5 |
+------------+-----------+-------------+
| 49 19 25 | 56 256 3 | 8 14 7 |
| 34 6 25 | 1 7 8 | 25 9 34 |
| 8 13 7 | 4 256 9 | 125 136 26 |
+------------+-----------+-------------+
| 29 8 6 | 7 1 4 | 3 5 29 |
| 239 359 1 | 36 8 25 | 4 7 269 |
| 7 35 4 | 9 36 25 | 12 16 8 |
+------------+-----------+-------------+
+------------+-----------+-------------+
| 5 7 8 | 2 34 6 | 9 34 1 |
| 6 2 9 | 35 345 1 | 7 8 34 |
| 1 4 3 | 8 9 7 | 6 2 5 |
+------------+-----------+-------------+
| 49 19 25 | 56 256 3 | 8 c14 267 |
| 34 6 25 | 1 7 8 | 25 9 34 |
| 8 a13 7 | 4 256 9 | b125 b136 26 |
+------------+-----------+-------------+
| 29 8 6 | 7 1 4 | 3 5 29 |
| 239 359 1 | 36 8 25 | 4 7 269 |
| 7 5-3 4 | 9 e36 25 | 12 d16 8 |
+------------+-----------+-------------+
*--------------------------------------------------------------*
| 5 7 8 | 2 34 6 | 9 34 1 |
| 6 2 9 | 35 345 1 | 7 8 34 |
| 1 4 3 | 8 9 7 | 6 2 5 |
|--------------------+--------------------+--------------------|
| 49 19 25 | 56 256 3 | 8 14 7 |
| 34 6 25 | 1 7 8 | 25 9 34 |
| 8 d13 7 | 4 25 9 | 125 e13-6 26 |
|--------------------+--------------------+--------------------|
| 29 8 6 | 7 1 4 | 3 5 29 |
| 239 359 1 | 36 8 25 | 4 7 269 |
| 7 c35 4 | 9 b36 25 | 12 a16 8 |
*--------------------------------------------------------------*
*--------------------------------------------------------------*
| 5 7 8 | 2 34 6 | 9 34 1 |
| 6 2 9 | 35 345 1 | 7 8 34 |
| 1 4 3 | 8 9 7 | 6 2 5 |
|--------------------+--------------------+--------------------|
|*9-4 19 25 | 56 256 3 | 8 14 7 |
| 34 6 25 | 1 7 8 | 25 9 34 |
| 8 13 7 | 4 25 9 | 125 136 *26 |
|--------------------+--------------------+--------------------|
| 29 8 6 | 7 1 4 | 3 5 29 |
| 29+3 359 1 | 36 8 25 | 4 7 29+6 |
| 7 35 4 | 9 36 25 | 12 16 8 |
*--------------------------------------------------------------*
Sudtyro2 wrote:
- Code: Select all
*--------------------------------------------------------------*
| 5 7 8 | 2 34 6 | 9 34 1 |
| 6 2 9 | 35 345 1 | 7 8 34 |
| 1 4 3 | 8 9 7 | 6 2 5 |
|--------------------+--------------------+--------------------|
|*9-4 19 25 | 56 256 3 | 8 14 7 |
| 34 6 25 | 1 7 8 | 25 9 34 |
| 8 13 7 | 4 25 9 | 125 136 *26 |
|--------------------+--------------------+--------------------|
| 29 8 6 | 7 1 4 | 3 5 29 |
| 29+3 359 1 | 36 8 25 | 4 7 29+6 |
| 7 35 4 | 9 36 25 | 12 16 8 |
*--------------------------------------------------------------*
Phil's ADP(29)r78c19, but again trying “externals.”
Column externals(*) needed are 9r4c1 and 2r6c9, giving (notation?):
ADP[9r4c1 = 2r6c9] – (2=154)r56c7,r4c8 => -4r4c1; stte
SteveC
*--------------------------------------------------------------*
| 5 7 8 | 2 34 6 | 9 34 1 |
| 6 2 9 | 35 345 1 | 7 8 34 |
| 1 4 3 | 8 9 7 | 6 2 5 |
|--------------------+--------------------+--------------------|
| 9-4 19 25 | 56 256 3 | 8 14 7 |
| 34 6 25 | 1 7 8 | 25 9 34 |
| 8 13 7 | 4 25 9 | 125 136 26 |
|--------------------+--------------------+--------------------|
| 29 8 6 | 7 1 4 | 3 5 29 |
| 29+3 *359 1 | 36 8 25 | 4 7 29+6 |
| 7 35 4 | 9 36 25 |*12 16 8 |
*--------------------------------------------------------------*
Re: April 14, 2015
Postby Sudtyro2 » Wed Apr 15, 2015 1:18 pm
Really good questions, Marty, that I asked myself (several times). Here's what I finally got from the first three examples in Ted's ADP treatise:
Ted says (in his Example 1) that you must select any combination of inferences that cover all eight AUR digits.
*--------------------------------------------------------------*
| 5 7 8 | 2 34 6 | 9 34 1 |
| 6 2 9 | 35 345 1 | 7 8 34 |
| 1 4 3 | 8 9 7 | 6 2 5 |
|--------------------+--------------------+--------------------|
|*9-4 19 25 | 56 256 3 | 8 14 7 |
| 34 6 25 | 1 7 8 | 25 9 34 |
| 8 13 7 | 4 25 9 | 125 136 *26 |
|--------------------+--------------------+--------------------|
| 29 8 6 | 7 1 4 | 3 5 29 |
| 29+3 359 1 | 36 8 25 | 4 7 29+6 |
| 7 35 4 | 9 36 25 | 12 16 8 |
*--------------------------------------------------------------*