.
Simplest-first solution:
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = TyW+W+SFin
*** Download from:
https://github.com/denis-berthier/CSP-Rules-V2.1***********************************************************************************************
15 Singles, leading to the following RESOLUTION STATE:
- Code: Select all
568 78 57 3 246789 4579 1 2679 4678
68 4 3 1 26789 79 289 5 678
9 1 2 45678 4678 457 48 67 3
14 2 9 48 148 6 7 3 5
3 5 14 2 147 147 6 8 9
7 6 8 9 5 3 24 12 14
1458 789 1457 4567 14679 14579 3 1679 2
2 3 157 567 1679 8 59 4 167
1458 789 6 457 3 2 589 179 178
whip[1]: r7n8{c2 .} ==> r9c2 ≠ 8, r9c1 ≠ 8
whip[1]: r3n5{c6 .} ==> r1c6 ≠ 5
whip[1]: b1n7{r1c3 .} ==> r1c9 ≠ 7, r1c5 ≠ 7, r1c6 ≠ 7, r1c8 ≠ 7
- Code: Select all
568 78 57 3 24689 49 1 269 468
68 4 3 1 26789 79 289 5 678
9 1 2 45678 4678 457 48 67 3
14 2 9 48 148 6 7 3 5
3 5 14 2 147 147 6 8 9
7 6 8 9 5 3 24 12 14
1458 789 1457 4567 14679 14579 3 1679 2
2 3 157 567 1679 8 59 4 167
145 79 6 457 3 2 589 179 178
hidden-pairs-in-a-block: b3{n2 n9}{r1c8 r2c7} ==> r2c7 ≠ 8, r1c8 ≠ 6
finned-x-wing-in-rows: n9{r8 r2}{c7 c5} ==> r1c5 ≠ 9
finned-x-wing-in-columns: n1{c6 c3}{r5 r7} ==> r7c1 ≠ 1
finned-x-wing-in-columns: n6{c8 c4}{r3 r7} ==> r7c5 ≠ 6
z-chain[3]: b8n1{r7c6 r8c5} - c3n1{r8 r5} - c6n1{r5 .} ==> r7c8 ≠ 1
biv-chain-rc[4]: r1c6{n4 n9} - r1c8{n9 n2} - r6c8{n2 n1} - r6c9{n1 n4} ==> r1c9 ≠ 4
stte
Remarks:
- the bivalue-chain-rc[4] is the same as Leren's
- the eliminations before it (except the whips[1]) could be skipped