.
98...5.677.46..8...6.87.9...78.6.4..4.9.....665...4..88.7..65...4...7683.96...712
Not sure what "this feature" means for you. But here's my solution. It has something noticeable: a non-degenerate tridagon with 7 guardians, which is not used in the solution - except for launching eleven's digit replacement technique.
The puzzle is in T&E(2), B2B.
Resolution state after Singles and whips[1]:
- Code: Select all
+-------------------+-------------------+-------------------+
! 9 8 123 ! 1234 1234 5 ! 123 6 7 !
! 7 123 4 ! 6 1239 1239 ! 8 235 15 !
! 1235 6 1235 ! 8 7 123 ! 9 234 14 !
+-------------------+-------------------+-------------------+
! 123 7 8 ! 12359 6 1239 ! 4 2359 159 !
! 4 123 9 ! 12357 12358 1238 ! 123 2357 6 !
! 6 5 123 ! 12379 1239 4 ! 123 2379 8 !
+-------------------+-------------------+-------------------+
! 8 123 7 ! 123 123 6 ! 5 49 49 !
! 125 4 125 ! 1259 1259 7 ! 6 8 3 !
! 35 9 6 ! 345 3458 38 ! 7 1 2 !
+-------------------+-------------------+-------------------+
146 candidates.
- Code: Select all
Trid-OR7-relation for digits 1, 2 and 3 in blocks:
b1, with cells (marked #): r1c3, r2c2, r3c1
b2, with cells (marked #): r1c4, r2c5, r3c6
b4, with cells (marked #): r6c3, r5c2, r4c1
b5, with cells (marked #): r6c5, r5c4, r4c6
with 7 guardians (in cells marked @): n4r1c4 n9r2c5 n5r3c1 n9r4c6 n5r5c4 n7r5c4 n9r6c5
+-------------------------+-------------------------+-------------------------+
! 9 8 123# ! 1234#@ 1234 5 ! 123 6 7 !
! 7 123# 4 ! 6 1239#@ 1239 ! 8 235 15 !
! 1235#@ 6 1235 ! 8 7 123# ! 9 234 14 !
+-------------------------+-------------------------+-------------------------+
! 123# 7 8 ! 12359 6 1239#@ ! 4 2359 159 !
! 4 123# 9 ! 12357#@ 12358 1238 ! 123 2357 6 !
! 6 5 123# ! 12379 1239#@ 4 ! 123 2379 8 !
+-------------------------+-------------------------+-------------------------+
! 8 123 7 ! 123 123 6 ! 5 49 49 !
! 125 4 125 ! 1259 1259 7 ! 6 8 3 !
! 35 9 6 ! 345 3458 38 ! 7 1 2 !
+-------------------------+-------------------------+-------------------------+
z-chain[3]: r9n4{c4 c5} - c5n8{r9 r5} - c5n5{r5 .} ==> r9c4≠5
whip[7]: c5n8{r5 r9} - r9c6{n8 n3} - c4n3{r9 r1} - c7n3{r1 r6} - c3n3{r6 r3} - c3n5{r3 r8} - b8n5{r8c4 .} ==> r5c5≠3
- Code: Select all
+-------------------+-------------------+-------------------+
! 9 8 123 ! 1234 1234 5 ! 123 6 7 !
! 7 123 4 ! 6 1239 1239 ! 8 235 15 !
! 1235 6 1235 ! 8 7 123 ! 9 234 14 !
+-------------------+-------------------+-------------------+
! 123 7 8 ! 12359 6 1239 ! 4 2359 159 !
! 4 123 9 ! 12357 1258 1238 ! 123 2357 6 !
! 6 5 123 ! 12379 1239 4 ! 123 2379 8 !
+-------------------+-------------------+-------------------+
! 8 123 7 ! 123 123 6 ! 5 49 49 !
! 125 4 125 ! 1259 1259 7 ! 6 8 3 !
! 35 9 6 ! 34 3458 38 ! 7 1 2 !
+-------------------+-------------------+-------------------+
***** STARTING ELEVEN_S REPLACEMENT TECHNIQUE *****
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
Trying in block 4
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to 3 digits 1, 2 and 3 in 3 cells r6c3, r5c2 and r4c1,
the resolution state is:
- Code: Select all
+----------------------+----------------------+----------------------+
! 9 8 123 ! 1234 1234 5 ! 123 6 7 !
! 7 123 4 ! 6 1239 1239 ! 8 1235 1235 !
! 1235 6 1235 ! 8 7 123 ! 9 1234 1234 !
+----------------------+----------------------+----------------------+
! 3 7 8 ! 12359 6 1239 ! 4 12359 12359 !
! 4 2 9 ! 12357 12358 1238 ! 123 12357 6 !
! 6 5 1 ! 12379 1239 4 ! 123 12379 8 !
+----------------------+----------------------+----------------------+
! 8 123 7 ! 123 123 6 ! 5 49 49 !
! 1235 4 1235 ! 12359 12359 7 ! 6 8 123 !
! 1235 9 6 ! 1234 123458 1238 ! 7 123 123 !
+----------------------+----------------------+----------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
;;; solution in W7, with nothing noticeable
whip[1]: r7n2{c5 .} ==> r9c6≠2, r8c4≠2, r8c5≠2, r9c4≠2, r9c5≠2
z-chain[6]: c5n4{r1 r9} - r9n8{c5 c6} - c6n3{r9 r5} - c7n3{r5 r6} - c7n2{r6 r1} - r1c3{n2 .} ==> r1c5≠3
whip[6]: c7n1{r5 r1} - r3n1{c9 c1} - r2c2{n1 n3} - r1n3{c3 c4} - r7n3{c4 c5} - b5n3{r5c5 .} ==> r5c6≠1
whip[4]: r5c6{n3 n8} - r9c6{n8 n1} - r7n1{c4 c2} - c2n3{r7 .} ==> r2c6≠3
z-chain[6]: c5n4{r1 r9} - r9n8{c5 c6} - r5c6{n8 n3} - r5c7{n3 n1} - r1n1{c7 c4} - r1n4{c4 .} ==> r1c5≠2
whip[6]: c5n8{r9 r5} - r5c6{n8 n3} - b2n3{r3c6 r1c4} - r1n4{c4 c5} - r1n1{c5 c7} - r5c7{n1 .} ==> r9c5≠3
whip[6]: r6n7{c4 c8} - r6n9{c8 c5} - c6n9{r4 r2} - c6n2{r2 r3} - b1n2{r3c3 r1c3} - c7n2{r1 .} ==> r6c4≠2
whip[6]: r1n1{c5 c7} - r5c7{n1 n3} - r5c6{n3 n8} - r9c6{n8 n3} - r7n3{c5 c2} - c2n1{r7 .} ==> r2c6≠1
whip[7]: r7n1{c5 c2} - c1n1{r9 r3} - c6n1{r3 r4} - c6n9{r4 r2} - c6n2{r2 r3} - r2c5{n2 n3} - r2c2{n3 .} ==> r9c5≠1
whip[7]: r7n1{c5 c2} - c1n1{r9 r3} - c6n1{r3 r4} - c6n9{r4 r2} - c6n2{r2 r3} - r2c5{n2 n3} - r2c2{n3 .} ==> r8c5≠1
whip[6]: b1n1{r2c2 r3c1} - r8n1{c1 c4} - r1n1{c4 c5} - c5n4{r1 r9} - b8n5{r9c5 r8c5} - r8n9{c5 .} ==> r2c9≠1
whip[7]: c3n5{r3 r8} - r9n5{c1 c5} - c5n8{r9 r5} - r5c6{n8 n3} - r3c6{n3 n1} - r1n1{c5 c7} - r5c7{n1 .} ==> r3c3≠2
whip[7]: b9n3{r9c9 r9c8} - c6n3{r9 r5} - c7n3{r5 r6} - c7n2{r6 r1} - b1n2{r1c3 r3c1} - r3c6{n2 n1} - r1n1{c4 .} ==> r3c9≠3
whip[7]: r7n1{c5 c2} - c1n1{r9 r3} - r2c2{n1 n3} - c3n3{r3 r8} - c9n3{r8 r9} - c9n1{r9 r4} - c6n1{r4 .} ==> r8c4≠1
whip[7]: r1c3{n3 n2} - r1c7{n2 n1} - r5c7{n1 n3} - c6n3{r5 r9} - b9n3{r9c9 r8c9} - r8n1{c9 c1} - r8n2{c1 .} ==> r1c4≠3
z-chain[3]: r2c2{n1 n3} - r1n3{c3 c7} - r1n1{c7 .} ==> r2c5≠1
z-chain[5]: b2n3{r2c5 r3c6} - r5c6{n3 n8} - r9n8{c6 c5} - b8n5{r9c5 r8c4} - r8n9{c4 .} ==> r8c5≠3
t-whip[5]: b2n3{r2c5 r3c6} - r5c6{n3 n8} - r9c6{n8 n1} - r7n1{c4 c2} - c2n3{r7 .} ==> r2c9≠3, r2c8≠3
whip[1]: c9n3{r9 .} ==> r9c8≠3
z-chain[3]: r2c9{n2 n5} - r2c8{n5 n1} - r9c8{n1 .} ==> r3c8≠2
z-chain[4]: b1n2{r1c3 r3c1} - b1n1{r3c1 r2c2} - r2c8{n1 n5} - r2c9{n5 .} ==> r1c7≠2
hidden-single-in-a-column ==> r6c7=2
biv-chain[3]: c5n2{r7 r2} - r2n3{c5 c2} - c2n1{r2 r7} ==> r7c5≠1
x-wing-in-columns: n1{c5 c7}{r1 r5} ==> r5c8≠1, r5c4≠1, r1c4≠1
naked-triplets-in-a-column: c5{r2 r6 r7}{n2 n9 n3} ==> r8c5≠9, r5c5≠3
singles ==> r8c5=5, r9c1=5, r3c3=5, r8c4=9
whip[1]: r9n2{c9 .} ==> r8c9≠2
hidden-pairs-in-a-row: r5{n5 n7}{c4 c8} ==> r5c8≠3, r5c4≠3
finned-x-wing-in-rows: n3{r5 r3}{c6 c7} ==> r1c7≠3
stte