Another SE 8.3

Post the puzzle or solving technique that's causing you trouble and someone will help

Another SE 8.3

Postby Draco » Sun Apr 05, 2009 3:15 am

This comes from Playr.co.uk as Extreme #6-622381:
Code: Select all
....457....1..7...9..18..5.61....2..3.9...5.6..5....71.8..52..3...7..8....386....

28   236   268  | 2369  4   5     | 7    1    289
2458 23456 1    | 2369  239 7     | 3469 3489 2489
9    23467 2467 | 1     8   36    | 346  5    24 
----------------+-----------------+---------------
6    1     478  | 5     379 3489  | 2    3489 489
3    247   9    | 24    127 148   | 5    48   6   
248  24    5    | 23469 239 34689 | 349  7    1   
----------------+-----------------+---------------
7    8     46   | 49    5   2     | 1    469  3   
124  2469  246  | 7     139 1349  | 8    2469 5   
1245 2459  3    | 8     6   149   | 49   249  7

The PMs are post-SSTS.

To be clear these puzzles are all far beyond what I can solve manually. My solver finds several potential back doors, but the nets (including one Nishino) it comes up with to crack the puzzle are pretty hairy (it takes 3 of 'em).

Any takers?

Cheers...

- drac
Draco
 
Posts: 143
Joined: 14 March 2008

Postby ttt » Sun Apr 05, 2009 7:35 am

Code: Select all
 *--------------------------------------------------------------------*
 | 28     236    268    | 2369   4      5      | 7      1      289    |
 | 2458   23456  1      | 2369   239    7      | 3469   3489   2489   |
 | 9      23467  2467   | 1      8      36     | 346    5      24     |
 |----------------------+----------------------+----------------------|
 | 6      1      478    | 5      379    3489   | 2      3489   489    |
 | 3      247    9      | 24     127    148    | 5      48     6      |
 | 248    24     5      | 23469  239    34689  | 349    7      1      |
 |----------------------+----------------------+----------------------|
 | 7      8      46     | 49     5      2      | 1      469    3      |
 | 124    2469   246    | 7      139    1349   | 8      2469   5      |
 | 1245   2459   3      | 8      6      149    | 49     249    7      |
 *--------------------------------------------------------------------*

I start first (not complete as usually:D ):
(13)r8c56=(1)r9c6-(1)r5c6=(1-27)r5c25=(2)r5c4-(2)r12c4=(2-9)r2c5=(9)r12c4-(9=4)r7c4 => r8c6<>4

ttt
ttt
 
Posts: 185
Joined: 20 October 2006
Location: vietnam

Postby Draco » Sun Apr 05, 2009 8:33 am

ttt -- that exposes a nice backdoor where r9c7<>9 will crack the puzzle to singles + an open pair in b1, leaving the puzzle at singles. There are some other backdoors as well, but this is one of the more accessible ones your move exposes.

Nice... could you tell me how you decided on using what appears to be an ahp (13) to start the move? And while I am starting to get the hang of Eureka (I think), I can't quite decode what r5c6=(1-27)r5c25 signifies?

Cheers...

- drac

PS: I found a Nishino net that hits many of the same squares and gives the same result, but since I don't know how to read your chain, I can't tell if they are just close or essentially the same:

r8c6=4 r7c4=9
r8c6=4 r8c5=3 r5c5=1
r7c4=9 [r1c4<>9 r2c4<>9] r2c5=9
[r8c6<>1] + r5c5=1 [r5c6<>1] = r9c6=1
r8c6=4 [r5c6<>4] + r9c6=1 [r5c6<>1] = r5c6=8
[r2c5<>2 + r5c5<>2] = r6c5=2 r5c4=4
r5c6=8 r5c8=4
r8c6<>4
Draco
 
Posts: 143
Joined: 14 March 2008

Postby Luke » Sun Apr 05, 2009 9:19 am

Code: Select all
*--------------------------------------------------------------------*
 | 28     236    268    |*2369   4      5      | 7     *1      289    |
 | 2458   23456  1      | 2369   239    7      | 3469  -9348   2489   |
 | 9      23467  2467   | 1      8      36     | 346    5      24     |
 |----------------------+----------------------+----------------------|
 | 6      1      478    | 5      379    3489   | 2      3489   489    |
 | 3      247    9      | 24     127    148    | 5      48     6      |
 | 248    24     5      | 23469  239    34689  | 349    7      1      |
 |----------------------+----------------------+----------------------|
 | 7      8      46     |*49     5      2      | 1     *469    3      |
 | 124    2469   246    | 7      139    1349   | 8      2469   5      |
 | 1245   2459   3      | 8      6      149    | 49     249    7      |
 *--------------------------------------------------------------------*

Noting conjugate (9)'s in r7: finned x-wing => r2c8<>9.

Edit to add a little loop:

Noting conjugate (6)'s in r6:
(6)r6c4=(6)r6c6-(6=3)r3c6-(group3)r12c4=(3)r6c4=>r6c4<>(249), r2c5<>3.

This type of puzzle I just have to chip away like this,

Draco, how do you know where the "back doors" are?
Last edited by Luke on Mon Apr 06, 2009 5:31 pm, edited 2 times in total.
User avatar
Luke
2015 Supporter
 
Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

Postby ttt » Sun Apr 05, 2009 9:25 am

Draco wrote:... could you tell me how you decided on using what appears to be an ahp (13) to start the move? And while I am starting to get the hang of Eureka (I think), I can't quite decode what r5c6=(1-27)r5c25 signifies?

That is not the first move I found...:D
There is some path to crack this one then my best path based on above move, we have strong link 4’s in box 8 after that.

(1)r5c6=(1-27)r5c25=(2)r5c4 meant (1)r5c6=(1)r5c5-(27)r5c25=(2)r5c4

I’m not sure for bellow NL – please correct me:
r8c6-4-als:r8c56=1=r9c6-1-r5c6=1=als:r5c25=2=r5c4-2-r12c4=2=r2c5=9=r12c4-9-r7c4-4-r8c6 => r8c6<>4

ttt
ttt
 
Posts: 185
Joined: 20 October 2006
Location: vietnam

Postby aran » Sun Apr 05, 2009 2:42 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 28     236    268    | 2369   4      5      | 7      1      289    |
 | 2458   23456  1      | 2369   239    7      | 3469   3489   2489   |
 | 9      23467  2467   | 1      8      36     | 346    5      24     |
 |----------------------+----------------------+----------------------|
 | 6      1      478    | 5      379    3489   | 2      3489   489    |
 | 3      247    9      | 24     127    148    | 5      48     6      |
 | 248    24     5      | 23469  239    34689  | 349    7      1      |
 |----------------------+----------------------+----------------------|
 | 7      8      46     | 49     5      2      | 1      469    3      |
 | 124    2469   246    | 7      139    1349   | 8      2469   5      |
 | 1245   2459   3      | 8      6      149    | 49     249    7      |
 *--------------------------------------------------------------------*

Some examples from this puzzle just to illustrate hidden set logic :
hidden pair
1. 48(r5c8+r4c9)=9r4c9-9r1c9=28r1c19-8r1c3=8r4c3 : =><8>r4c8
2. 48(r5c8+r4c9)=9r4c9-9r1c9=28r1c19-(8=6)r1c3-6r78c3=(6-9)r8c2=9r9c2-(9=4)r9c7 : =><4>r6c7
3. 28r1c13=6r1c3-(6=4)r7c3-(4=2)r8c3-(24=1)r8c1-(124=5)r9c1-5r9c2=(5-2)r2c2 :=><2>r2c2
hidden triple
4. 246r178c3=8r1c3-(8=2)r1c1 : =><2>r3c3
hidden quintuplet...
5. 24689r45789c8=3r4c8-(3=9)r6c7-(9=4)r9c7-(4=269)r789c8 :=><9>r2c8...but then Luke found that far more easily:)
aran
 
Posts: 334
Joined: 02 March 2007

Postby ronk » Sun Apr 05, 2009 3:34 pm

ttt wrote:I start first (not complete as usually:D ):
(13)r8c56=(1)r9c6-(1)r5c6=(1-27)r5c25=(2)r5c4-(2)r12c4=(2-9)r2c5=(9)r12c4-(9=4)r7c4 => r8c6<>4

Later ttt wrote:I’m not sure for bellow NL – please correct me:
r8c6-4-als:r8c56=1=r9c6-1-r5c6=1=als:r5c25=2=r5c4-2-r12c4=2=r2c5=9=r12c4-9-r7c4-4-r8c6 => r8c6<>4

Gee, you picked out a tough one.:) Your NL is incorrect, but I don't know how write it either. It seems you've managed to find an AIC that converts to a net instead of a chain. Perhaps I'll take another look later.

While trying to rewrite your AIC, I did find this continuous loop.
Code: Select all
 *--------------------------------------------------------------------*
 | 28     236    268    |*2369   4      5      | 7      1      289    |
 | 2458   23456  1      |*2369  *29-3   7      | 3469   3489   2489   |
 | 9      23467  2467   | 1      8      36     | 346    5      24     |
 |----------------------+----------------------+----------------------|
 | 6      1      478    | 5      379    3489   | 2      3489   489    |
 | 3      247    9      |*24     127    148    | 5      48     6      |
 | 248    24     5      | 36-249 239    34689  | 349    7      1      |
 |----------------------+----------------------+----------------------|
 | 7      8      46     |*49     5      2      | 1      469    3      |
 | 124    2469   246    | 7      139    1349   | 8      2469   5      |
 | 1245   2459   3      | 8      6      149    | 49     249    7      |
 *--------------------------------------------------------------------*

 = r2c5 =9= r12c4 -9- r7c4 -4- r5c4 -2- r12c4 =2= r2c5 = continuous loop ==> r6c4<>249, r2c5<>3 

 (2-9)r2c5 = (9)r12c4 - (9=4)r7c4 - (4=2)r5c4 - (2)r12c4 = loop ==> r6c4<>249, r2c5<>3
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby 999_Springs » Sun Apr 05, 2009 6:20 pm

Code: Select all
9r9c7(-9-r9c6)(-9-r7c8=9=r7c4-9-r8c6)=4=r789c8-4-r5c8-8-r5c6-14-r8c6-3-r3c6-6-r3c23
||       \__________________________________________________/
||
4r9c7-naked pair r3c67-6-r3c23

r3c23<>6

I don't really know how to indicate subsets in any form of chain notation, but this should be understandable.
Hidden Text: Show
Once upon a time I was a teenager who was active on here 2007-2011
999_Springs
 
Posts: 367
Joined: 27 January 2007
Location: In the toilet, flushing down springs, one by one.

Postby Luke » Sun Apr 05, 2009 6:31 pm

ronk wrote:While trying to rewrite your AIC, I did find this continuous loop.
Code: Select all
 *--------------------------------------------------------------------*
 | 28     236    268    |*2369   4      5      | 7      1      289    |
 | 2458   23456  1      |*2369  *29-3   7      | 3469   3489   2489   |
 | 9      23467  2467   | 1      8      36     | 346    5      24     |
 |----------------------+----------------------+----------------------|
 | 6      1      478    | 5      379    3489   | 2      3489   489    |
 | 3      247    9      |*24     127    148    | 5      48     6      |
 | 248    24     5      | 36-249 239    34689  | 349    7      1      |
 |----------------------+----------------------+----------------------|
 | 7      8      46     |*49     5      2      | 1      469    3      |
 | 124    2469   246    | 7      139    1349   | 8      2469   5      |
 | 1245   2459   3      | 8      6      149    | 49     249    7      |
 *--------------------------------------------------------------------*

 = r2c5 =9= r12c4 -9- r7c4 -4- r5c4 -2- r12c4 =2= r2c5 = continuous loop ==> r6c4<>249, r2c5<>3 

 (2-9)r2c5 = (9)r12c4 - (9=4)r7c4 - (4=2)r5c4 - (2)r12c4 = loop ==> r6c4<>249, r2c5<>3

Luke451 wrote:Noting conjugate (6)'s in r6:
(6)r6c4=(6)r6c6-(6=3)r3c6-(group3)r12c4=(3)r6c4=>r6c4<>(249).

Ron, I think I over-looked the r2c5<>3 in the above loop. That would mean there's two loops here with the exact same eliminations!
User avatar
Luke
2015 Supporter
 
Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

Postby Allan Barker » Sun Apr 05, 2009 6:32 pm

And just when you begin to think, that it all begins to look the same ..........

7 Sided Broken Loop with 1 target that sees 4 guardians, with guardian appendix

Code: Select all
       +--------------------+---------------------+---------------------+
      | 28    236    268   | 2369   4    5       | 7     1       289   |
      | 2458  23456  1     | 2369   239  7       | 3469  3489    2489  |
      | 9     23467  2467  | 1      8    36      | 346   5       24    |
      +--------------------+---------------------+---------------------+
      | 6     1      (4*78)| 5      379  39-4(8*)| 2     349(8)  49(8) |
      | 3     (2*47) 9     | (24*)  127  18(4*)  | 5     (48)    6     |
      | 248   24     5     | 23469  239  34689   | 349   7       1     |
      +--------------------+---------------------+---------------------+
      | 7     8      46    | 49     5    2       | 1     469     3     |
      | 124   2469   246   | 7      139  1349    | 8     2469    5     |
      | 1245  2459   3     | 8      6    149     | 49    249     7     |
      +--------------------+---------------------+---------------------+

     (4r4)                 (4n6)       <--- Cover Sets --->                (2r5)  (4b5)

     4r4c6================4r4c6===============================================4r4c6   <-- Target
       |                    |                                                /     \
4N3 *4r4c3==7r4c3==8r4c3    |                                               |       |
             ||      ||     |                                               |       |
8R4:         ||    8r4c3=*8r4c6==8r4c8==8r4c9                               |       |
             ||                    ||     ||                                |       |
8B6:         ||                  8r4c8==8r4c9==8r5c8                        |       |
             ||                                  ||                         |       |
5N8:         ||                                8r5c8==4r5c8                 |       |
             ||                                         ||                  |       |
4R5:         ||                                       4r5c8==4r5c2=======*4r5c6==*4r5c4
             ||                                                ||                   |
5N2:         ||                                              4r5c2==7r5c2=*2r5c2    |  Appendix
             ||                                                       ||     |      |  Guardian
7B4:        7r4c3===================================================7r5c2    |      |  Loop
                                                                             |      |
5N4:                                                                      2r5c4==4r5c4
        Guardians (*)
        Note: Broken Wing candidates shown twice to show set links (left)


Image
Allan Barker
 
Posts: 266
Joined: 20 February 2008

Postby Draco » Sun Apr 05, 2009 7:59 pm

Luke451 wrote:Draco, how do you know where the "back doors" are?

It's just code + CPU cycles. My solver has a scoring algorithm that is reasonably stable (not as useful as SE because it does not support as many techniques, but it does the job). With a scoring algorithm, you simpoly loop through the puzzle to see what each new move does (I got the idea from a discussion in the Solver thread).

It is interesting to see how different moves cause different sections of the grid to "collapse" (i.e. create a new backdoor). For a puzzle like this one, it is also kinda' slow (5 - 10 seconds to test/score the puzzle and come up with a "top 10" list). I've been thinking about creating grapics that visually show how the puzzle progresses, but have not moved beyond the thought stage there.

Cheers...

- drac
Draco
 
Posts: 143
Joined: 14 March 2008

Postby Draco » Sun Apr 05, 2009 8:19 pm

Allan Barker wrote:And just when you begin to think, that it all begins to look the same ..........

7 Sided Broken Loop with 1 target that sees 4 guardians, with guardian appendix

Wow... I am not even sure how to read that, but with the graphics I imagine I'll figure it out. No help (for me anyway) just yet pls.

I do have one question Allan -- how is a 7-sided loop different than a network?

Thx...

- drac
Draco
 
Posts: 143
Joined: 14 March 2008

Postby Draco » Sun Apr 05, 2009 9:09 pm

Not utilizing the backdoors, but here's a chain + simple net that use links on 2's and 8's to show r2c9<>2, r3c3<>2 (from the orignial PMs):

------ Chain ------
r1c1=2 [r3c2<>2 r3c3<>2] r3c9=2
------ Simple Net ------
r1c1=8 [r6c1<>8] r4c3=8 r6c6=8
r4c3=8 r3c3=7
r6c6=8 [r5c6<>8] r5c8=8
r1c1=8 [r2c1<>8] + r5c8=8 [r2c8<>8] = r2c9=8

I've tried to combine this will all the other eliminations people have posted to come up with a merged set of PM's (hope I got them all):
Code: Select all
28   236  268 | 2369 4   5     | 7    1    289
2458 3456 1   | 2369 29  7     | 3469 348  489
9    2347 47  | 1    8   36    | 346  5    24
--------------+----------------+--------------
6    1    478 | 5    379 389   | 2    349  489
3    247  9   | 24   127 148   | 5    48   6 
248  24   5   | 36   239 34689 | 39   7    1 
--------------+----------------+--------------
7    8    46  | 49   5   2     | 1    469  3 
124  2469 246 | 7    139 139   | 8    2469 5 
1245 2459 3   | 8    6   149   | 49   249  7


Cheers...

- drac
Draco
 
Posts: 143
Joined: 14 March 2008

Postby ronk » Sun Apr 05, 2009 11:35 pm

Allan Barker wrote:7 Sided Broken Loop with 1 target that sees 4 guardians, with guardian appendix

Congratulations on a very nice find. Most of us think of the "broken wing" in terms of a single digit, but the principle certainly holds for multi-digit broken wings as well. To your knowledge, has anyone ever posted a multi-digit BW before:?:

Luke451 wrote:I think I over-looked the r2c5<>3 in the above loop. That would mean there's two loops here with the exact same eliminations!

Right you are and, with only three strong inferences, that's an elegant continuous loop. Suggest you edit that add'l elimination into your post.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby aran » Mon Apr 06, 2009 12:02 am

Allan Barker wrote:7 Sided Broken Loop with 1 target that sees 4 guardians, with guardian appendix
Code: Select all
       +--------------------+---------------------+---------------------+
      | 28    236    268   | 2369   4    5       | 7     1       289   |
      | 2458  23456  1     | 2369   239  7       | 3469  3489    2489  |
      | 9     23467  2467  | 1      8    36      | 346   5       24    |
      +--------------------+---------------------+---------------------+
      | 6     1      (4*78)| 5      379  39-4(8*)| 2     349(8)  49(8) |
      | 3     (2*47) 9     | (24*)  127  18(4*)  | 5     (48)    6     |
      | 248   24     5     | 23469  239  34689   | 349   7       1     |
      +--------------------+---------------------+---------------------+
      | 7     8      46    | 49     5    2       | 1     469     3     |
      | 124   2469   246   | 7      139  1349    | 8     2469    5     |
      | 1245  2459   3     | 8      6    149     | 49    249     7     |
      +--------------------+---------------------+---------------------+


Image

Allan, less good, one could also apply anti-guardian logic :
Guardian logic : preservation of a valid loop=>guardians required=>eliminate anything seen by all guardians
Anti-guardian logic : starting with the elimination candidate (that's the weak part of the story !) ignore all anti-guardians (ie anything which if true eliminates the elim candidate).
Giving :
4r4c6-(4=2)r5c4-(2=47)r5c2.
Then 7r5c2=8r4c3(4*r4c3 ignored)-8r4c89=(8-4)r5c8=4r5c2(4*r5c46 ignored). Contradiction ie to preserve 4r4c6, r5c2 must be both 7 and 4=><4>r4c6.
aran
 
Posts: 334
Joined: 02 March 2007

Next

Return to Help with puzzles and solving techniques