- Code: Select all
. 7 5| 2 6 .| . 4 9
. 2 .| . . .| 1 . .
1 . 6| 7 . .| 2 . .
------+------+-------
. . .| 9 5 .| 7 6 .
. . .| . 3 .| . . .
. 5 4| . 7 6| . . .
------+------+-------
. . 2| . . 5| 4 . 3
. . 1| . . .| . 2 .
5 3 .| . 2 4| 6 1 .
and lets jump to here:
- Code: Select all
38 7 5 | 2 6 1 | 38 4 9
49 2 38| 5 48 39| 1 7 6
1 49 6 | 7 48 39| 2 358 58
-----------+--------+------------
238 1 38| 9 5 28| 7 6 4
2689 69 7 | 4 3 28| 589 58 1
89 5 4 | 1 7 6 | 389 38 2
-----------+--------+------------
7 8 2 | 6 1 5 | 4 9 3
46 46 1 | 3 9 7 | 58 2 58
5 3 9 | 8 2 4 | 6 1 7
If we look carefully to this grid, it can be concluded that we cannot have r5c7<>9 and r3c8<>3, or we would be left with a Swordfish pattern of 58s that imply more than one solution to the puzzle. So, if 9 is not in r5c7, 3 must be in r3c8 and vice-versa. This can be expressed by the link [r5c7]=9|3=[r3c8], and we have
[r5c7]=9|3=[r3c8]-3-[r1c7](-8-[r5c7])-8-[r8c7]-5-[r5c7], => r5c7=9
which solve the puzzle.
Carcul