002800000030060007100000040600090000050600009000057060000300100070006008400000020
Solution based on abi's deep understanding of exocets, here.
#1. ALS (124)r46c4
a. There is an exocet at the very start.
- Code: Select all
+------------------------+----------------------------+------------------------+
| 579 469 2 | 8 1347 13459 | 3569 1359 1356 |
| 589 3 589(4) | 59(124) 6 -59(124) | 589(2) 589(1) 7 |
| 1 689 56789 | 2579 237 2359 | 235689 4 2356 |
+------------------------+----------------------------+------------------------+
| 6 1248 13478 | (124) 9 12348 | 234578 13578 12345 |
| 378(2) 5 378(14) | 6 38(124) 38(124) | 378(24) 378(1) 9 |
| 2389 12489 13489 | (124) 5 7 | 2348 6 1234 |
+------------------------+----------------------------+------------------------+
| 2589 2689 5689 | 3 2478 24589 | 1 579 456 |
| 359(2) 7 359(1) | 59(124) (124) 6 | 359(4) 359 8 |
| 4 1689 135689 | 1579 178 1589 | 35679 2 356 |
+------------------------+----------------------------+------------------------+
Exocet : base 124[r4c6=r6c4]
(SF=Swordfish)
1r46c4-1r28c4.r5c56=SF(1)[r2c6=*r2c8-r5c8=*r5c3-r8c3=*r8c5]
||
2r46c4-2r28c4.r5c56=SF(2)[r2c6=*r2c7-r5c7=*r5c1-r8c1=*r8c5]
||
4r46c4-4r28c4.r5c56=SF(4)[r2c6=*r2c3-r5c3=*r5c7-r8c7=*r8c5]
=> SF(1)=SF(2)=SF(4)
or
=> [1r2c6=1r8c5]=[2r2c6=2r8c5]=[4r2c6=4r8c5]
or
=> Target : 124[r2c6=r8c5] => -58r2c6
Conclusion : r2c6 and r8c5 can only contain the digits 1, 2 and 4 => -59r2c6
b. Further analysis of the exocet.
Let us examine the implications of each possible solution of the ALS (124)r46c4 :
- Code: Select all
+--------------------------+-------------------------------+--------------------------+
| 579 69(4) 2 | 8 347-1 13459 | 3569 359-1 1356 |
| 589 3 589(4) | 59(4-12) 6 -59(12-4) | 589(2) 589(1) 7 |
| 1 689 56789 | 579-2 37-2 2359 | 35689-2 4 356(2) |
+--------------------------+-------------------------------+--------------------------+
| 6 28(14) 3478-1 | (12-4) 9 348-12 | 34578-2 3578-1 135(24) |
| 378(2) 5 378(14) | 6 38(4-12) 38(4-12) | 378(24) 378(1) 9 |
| 389-2 289(14) 3489-1 | (12-4) 5 7 | 348-2 6 13(24) |
+--------------------------+-------------------------------+--------------------------+
| 589-2 2689 5689 | 3 2478 4589-2 | 1 579 56(4) |
| 359(2) 7 359(1) | 59(4-12) (12-4) 6 | 359(4) 359 8 |
| 4 689(1) 35689-1 | 579-1 178 589-1 | 35679 2 356 |
+--------------------------+-------------------------------+--------------------------+
12r46c4
||
(14r46c4)
14r28c4.r5c56=[1r5c3=1r5c8-1r2c8=(1-4)r2c6=4r2c3]
4r5c56========4r5c3=4r5c7
4r8c4===============4r8c7=4r8c5
1r8c4=====================1r8c5=1r8c3
1r5c56==========================1r5c3=1r5c8
1r2c4=================================1r2c8=1r2c6
4r2c4=======================================4r2c6=4r2c3
DP(14)r46c24====================1r9c2=============4r1c2
||
(24r46c4)
24r28c4.r5c56=[2r5c7=2r5c1-2r8c1=(2-4)r8c5=4r8c7]
4r5c56========4r5c7=4r5c3
4r2c4===============4r2c3=4r2c6
2r2c4=====================2r2c6=2r2c7
2r5c4===========================2r5c7=2r5c1
2r8c4=================================2r8c1=2r8c5
4r8v4=======================================4r8c5=4r8c7
DP(24)r46c49====================2r9c7=============4r7c9
Comments :
Case 1 : 12r46c4
Case 2 : 14r46c4
1r5c3=1r5c8-1r2c8=(1-4)r2c6=4r2c3 => -4r5c3, +4r5c7
=> +4r8c5, +1r8c3 (=> -1r9c2), +1r5c8, +1r2c6, +4r2c3 (=> -4r1c2)
IOW, SF(1) and SF(4) are solved, r46c2=14 => DP(14)r46c24 !
Case 3 : 24r46c4
2r5c7=2r5c1-2r8c1=(2-4)r8c5=4r8c7 => -4r5c7, +4r5c3
=> +4r2c6, +2r2c7 (=> -2r3c9), +2r5c1, +2r8c5, +4r8c7 (=> -4r7c9)
IOW, SF(2) and SF(4) are solved, r46c9=24 => DP(24)r46c49 !
Conclusions :
+NP(12)r46c4 => -12r2389c3.r45c56
SF(1) => -1r1c5.r9c4
SF(2) => -2r3c5.r7c6
Furtermore, SF(1) and SF(2) enter into the following nice loop :
{(1-2)r2c6=2r2c7-2r5c7=2r5c1-2r8c1=(2-1)r8c5=1r8c3-1r5c3=1r5c8-1r2c8}
=> -459r2c6, -2r346c7, -2r67c1, -4r8c5, -1r469c3, -1r14c8
Note 1 : the puzzle is reduced to SE9.0.
Note 2 : AS#49 seems to be a clone of Fata Morgana. To wit the corresponding situation :
Fata Morgana : 000000003001005600090040070000009050700050008050402000080020090003500100600000000
#2.
- Code: Select all
+----------------------+------------------------+-------------------------+
| 59(7) 469 2 | 8 3-7(4) 359(14) | 3569 359 356(1) |
| 589 3 4589 | 59(4) 6 (12) | 589(2) 59(18) 7 |
| 1 689 56789 | 579 37 2359 | 35689 4 2356 |
+----------------------+------------------------+-------------------------+
| 6 1248 3478 | 12 9 348 | 34578 357(8) 12345 |
| 8(237) 5 13478 | 6 348 348 | 3478(2) 137(8) 9 |
| 89(3) 12489 3489 | 12 5 7 | (348) 6 1234 |
+----------------------+------------------------+-------------------------+
| 589 2689 5689 | 3 2478 4589 | 1 579 456 |
| 59(23) 7 1359 | 59(4) 12 6 | 359(4) 359 8 |
| 4 1689 35689 | 579 178 589 | 35679 2 356 |
+----------------------+------------------------+-------------------------+
7r1c1=7r5c1
2r5c1=2r8c1
3r5c1=3r8c1=3r6c1
2r5c1=============2r5c7
2r2c7=2r2c6
1r2c6=1r1c6
1r1c9=1r2c8
8r2c8=8r45c8
3r6c7=========================8r6c7==4r6c7
4r8c7=4r8c4
4r1c5===============================4r1c6====================4r2c4
=> 7r1c1=4r1c5 => -7r1c5
#3.
- Code: Select all
+----------------------+--------------------+-------------------------+
| 7 469 2 | 8 34 13459 | 3569 359 1356 |
| 589 3 4589 | 459 6 (12) | 589(2) 589-1 7 |
| 1 689 5689 | 579 37 2359 | 35689 4 2356 |
+----------------------+--------------------+-------------------------+
| 6 1248 348(7) | 12 9 348 | 3458(7) 3578 12345 |
| 238 5 348(17) | 6 348 348 | 348(27) 38-7(1) 9 |
| 389 12489 3489 | 12 5 7 | 348 6 1234 |
+----------------------+--------------------+-------------------------+
| 589 2689 5689 | 3 48(27) 4589 | 1 59(7) 456 |
| 2359 7 359(1) | 459 (12) 6 | 3459 359 8 |
| 4 1689 35689 | 579 178 589 | 3569(7) 2 356 |
+----------------------+--------------------+-------------------------+
1r5c8=1r5c3
7r5c3=7r4c3
1r8c3=======1r8c5
2r8c5=2r7c5
7r7c5=7r7c8
7r4c7=============7r9c7=7r5c7*
2r5c7=2r2c7
1r2c6=====================================2r2c6
=> *1r5c8=7r5c7 : -7r5c8; 1r5c8=1r2c6 : -1r2c8; 10 Singles
#4.
- Code: Select all
+---------------------+----------------------+----------------------+
| 7 69(4) 2 | 8 (34) 3459 | 3569 359 1 |
| 589 3 89(45) | 59(4) 6 1 | 2 589 7 |
| 1 689 689(5) | 59(7) -3(7) 2 | 35689 4 (356) |
+---------------------+----------------------+----------------------+
| 6 148 3478 | 12 9 348 | 34578 3578 2345 |
| 2 5 3478 | 6 348 348 | 3478 1 9 |
| 389 1489 3489 | 12 5 7 | 348 6 234 |
+---------------------+----------------------+----------------------+
| 589 2 89(56) | 3 78(4) 589(4) | 1 579 5(46) |
| 359 7 1 | 59(4) 2 6 | 3459 359 8 |
| 4 89(6) 89(356) | 59(7) 1 589 | 59(367) 2 5(36) |
+---------------------+----------------------+----------------------+
3r1c5=4r1c5
4r1c2=4r2c3
4r2c4=======4r8c4
4r7c56=4r7c9
7r3c5==========================7r3c4
7r9c4=7r9c7
6r7c9=======6r9c7=6r9c9
6r9c23=6r7c3
3r9c7=3r9c9========3r9c4
5r2c3=================================5r7c3=5r9c4=5r3c4
3r3c9======================================6r3c9==============5r3c9
=> 3r1c5=7r3c5=3r3c9 => -3r3c5; 3 Singles, Claiming(+3r3c79) => -3r1c78
#5. Skyscraper(3C18) : 3r6c1=3r8c1-3r8c8=3r4c8 => -3r4c3.r6c79
#6.
- Code: Select all
+---------------------+------------------+-------------------+
| 7 69(4) 2 | 8 34 3459 | 569 59 1 |
| 589 3 589(4) | 59(4) 6 1 | 2 589 7 |
| 1 689 5689 | 59 7 2 | 35689 4 356 |
+---------------------+------------------+-------------------+
| 6 8(14) 478 | 12 9 348 | 34578 358 2345 |
| 2 5 478 | 6 348 348 | 3478 1 9 |
| 389 89(14) 3489 | (12) 5 7 | 8-4 6 (24) |
+---------------------+------------------+-------------------+
| 589 2 5689 | 3 48 4589 | 1 7 456 |
| 359 7 1 | 59(4) 2 6 | 359(4) 359 8 |
| 4 689 35689 | 7 1 589 | 3569 2 356 |
+---------------------+------------------+-------------------+
(4=2)r6c9-(2=1)r6c4-1r6c2=(1-4)r4c2=[4r6c2=]4r1c2-4r2c3=4r2c4-4r8c4=4r8c7
=> 4r6c9=4r6c2=4r8c7 => -4r6c7; 11 Singles
#7. Skyscraper(9C48) : 9r3c4=9r8c4-9r8c8=9r1c8 => -9r1c6.r3c7; stte