SER = 9.0
This puzzle is a typical one in the SER 9.0 category. I've found nothing noticeable (in particular, not a lot of fish - fortunately, I didn't rely on it for lunch).
Generally, this type of puzzle is not proposed to human solvers; but it can be useful from time to time to recall that this is the reality of Sudoku solving when you don't restrict your puzzles to pre-digested ones.
Resolution state after Singles:
- Code: Select all
+----------------------+----------------------+----------------------+
! 1 23579 379 ! 4 239 6 ! 8 2357 257 !
! 2589 23459 3489 ! 23589 2389 7 ! 6 235 1 !
! 2578 2357 6 ! 2358 1 258 ! 9 2357 4 !
+----------------------+----------------------+----------------------+
! 568 356 38 ! 7 2348 1 ! 24 9 258 !
! 4 135679 13789 ! 235689 2389 2589 ! 127 25678 2578 !
! 56789 15679 2 ! 5689 489 589 ! 147 5678 3 !
+----------------------+----------------------+----------------------+
! 26 1246 14 ! 28 7 3 ! 5 28 9 !
! 279 279 5 ! 1 6 289 ! 3 4 278 !
! 3 8 79 ! 29 5 4 ! 27 1 6 !
+----------------------+----------------------+----------------------+
181 candidates, 1002 csp-links and 1002 links. Density = 6.15%
whip[1]: r4n6{c2 .} ==> r6c2 ≠ 6, r5c2 ≠ 6, r6c1 ≠ 6
naked-pairs-in-a-row: r7{c4 c8}{n2 n8} ==> r7c2 ≠ 2, r7c1 ≠ 2
singles ==> r7c1 = 6, r4c2 = 6
whip[1]: b7n2{r8c2 .} ==> r8c6 ≠ 2, r8c9 ≠ 2
whip[1]: b8n2{r9c4 .} ==> r2c4 ≠ 2, r3c4 ≠ 2, r5c4 ≠ 2
z-chain[3]: b2n9{r2c5 r2c4} - c1n9{r2 r8} - c6n9{r8 .} ==> r6c5 ≠ 9
z-chain[3]: b3n7{r3c8 r1c9} - c3n7{r1 r9} - c7n7{r9 .} ==> r5c8 ≠ 7
t-whip[3]: r8c9{n7 n8} - r7c8{n8 n2} - b3n2{r3c8 .} ==> r1c9 ≠ 7
whip[1]: b3n7{r3c8 .} ==> r6c8 ≠ 7
finned-x-wing-in-rows: n7{r9 r6}{c7 c3} ==> r5c3 ≠ 7
z-chain[4]: b8n8{r7c4 r8c6} - c9n8{r8 r4} - c3n8{r4 r2} - c5n8{r2 .} ==> r5c4 ≠ 8
whip[6]: r9c3{n9 n7} - r1c3{n7 n3} - c2n3{r3 r5} - r5n1{c2 c7} - c7n7{r5 r6} - b4n7{r6c1 .} ==> r5c3 ≠ 9
t-whip[7]: r8n8{c6 c9} - r7n8{c8 c4} - r7n2{c4 c8} - b3n2{r3c8 r1c9} - r4c9{n2 n5} - r4c1{n5 n8} - r3n8{c1 .} ==> r5c6 ≠ 8, r6c6 ≠ 8
biv-chain[4]: r9c7{n2 n7} - r8c9{n7 n8} - c6n8{r8 r3} - c6n2{r3 r5} ==> r5c7 ≠ 2
biv-chain[4]: r6c5{n8 n4} - r4n4{c5 c7} - c7n2{r4 r9} - r7c8{n2 n8} ==> r6c8 ≠ 8
biv-chain[3]: r6c6{n9 n5} - r6c8{n5 n6} - b5n6{r6c4 r5c4} ==> r5c4 ≠ 9
z-chain[3]: b4n9{r6c2 r6c1} - c4n9{r6 r9} - c3n9{r9 .} ==> r2c2 ≠ 9
t-whip[4]: r9n7{c3 c7} - r5c7{n7 n1} - b4n1{r5c2 r6c2} - r6n7{c2 .} ==> r8c1 ≠ 7
z-chain[4]: c3n9{r2 r9} - c3n7{r9 r1} - c1n7{r3 r6} - b4n9{r6c1 .} ==> r1c2 ≠ 9
finned-x-wing-in-rows: n9{r9 r1}{c3 c4} ==> r2c4 ≠ 9
whip[1]: b2n9{r2c5 .} ==> r5c5 ≠ 9
z-chain[6]: r7c4{n8 n2} - r9n2{c4 c7} - r4c7{n2 n4} - r6n4{c7 c5} - r6n8{c5 c1} - r3n8{c1 .} ==> r2c4 ≠ 8
z-chain[4]: r2c4{n5 n3} - r2c8{n3 n2} - r1c9{n2 n5} - r4n5{c9 .} ==> r2c1 ≠ 5
z-chain[6]: c8n7{r3 r1} - c8n3{r1 r2} - r2c4{n3 n5} - r3c6{n5 n8} - b8n8{r8c6 r7c4} - r7n2{c4 .} ==> r3c8 ≠ 2
whip[6]: r6c6{n9 n5} - r6c8{n5 n6} - r6c4{n6 n8} - b8n8{r7c4 r8c6} - r3n8{c6 c1} - c1n7{r3 .} ==> r6c1 ≠ 9
whip[1]: b4n9{r6c2 .} ==> r8c2 ≠ 9
biv-chain[3]: c2n9{r5 r6} - r6n1{c2 c7} - r5c7{n1 n7} ==> r5c2 ≠ 7
whip[1]: r5n7{c9 .} ==> r6c7 ≠ 7
z-chain[4]: r3n2{c2 c6} - c6n8{r3 r8} - r8n9{c6 c1} - r8n2{c1 .} ==> r1c2 ≠ 2
z-chain[4]: r3n2{c2 c6} - c6n8{r3 r8} - r8n9{c6 c1} - r8n2{c1 .} ==> r2c2 ≠ 2
whip[4]: r2c4{n3 n5} - r2c8{n5 n2} - r1n2{c9 c5} - c5n9{r1 .} ==> r2c5 ≠ 3
whip[6]: r2c4{n3 n5} - r2c8{n5 n2} - r1n2{c9 c5} - r3c6{n2 n8} - b8n8{r8c6 r7c4} - r7n2{c4 .} ==> r2c2 ≠ 3
whip[6]: r2c4{n3 n5} - r2c8{n5 n2} - r1n2{c9 c5} - b5n2{r4c5 r5c6} - r5n9{c6 c2} - c2n3{r5 .} ==> r2c3 ≠ 3
z-chain[7]: r6c7{n1 n4} - c5n4{r6 r4} - r4n3{c5 c3} - r5c3{n3 n8} - c8n8{r5 r7} - r8c9{n8 n7} - r5n7{c9 .} ==> r5c7 ≠ 1
singles ==> r5c7 = 7, r9c7 = 2, r4c7 = 4, r6c7 = 1, r7c8 = 8
naked-single ==> r7c4 = 2, r8c9 = 7, r8c2 = 2, r8c1 = 9, r8c6 = 8, r9c3 = 7, r9c4 = 9, r6c5 = 4
x-wing-in-rows: n8{r3 r6}{c1 c4} ==> r4c1 ≠ 8, r2c1 ≠ 8
singles ==> r2c1 = 2, r4c1 = 5, r3c6 = 2
whip[1]: c6n5{r6 .} ==> r5c4 ≠ 5, r6c4 ≠ 5
naked-pairs-in-a-row: r1{c3 c5}{n3 n9} ==> r1c8 ≠ 3, r1c2 ≠ 3
naked-pairs-in-a-row: r2{c4 c8}{n3 n5} ==> r2c2 ≠ 5
singles ==> r2c2 = 4, r7c2 = 1, r7c3 = 4, r5c3 = 1
x-wing-in-rows: n3{r1 r4}{c3 c5} ==> r5c5 ≠ 3
biv-chain[3]: r6c8{n5 n6} - r6c4{n6 n8} - r5n8{c5 c9} ==> r5c9 ≠ 5
stte