This is it after simple moves:

- Code: Select all
`*-----------------------*`

| 1 . 3 | . 2 . | . 4 5 |

| . 5 . | 4 . 1 | . 2 3 |

| 2 . 4 | 5 6 3 | 1 . . |

|-------+-------+-------|

| . . 2 | . 5 4 | 3 . 1 |

| 5 3 7 | 1 8 6 | 4 9 2 |

| 4 1 . | . . 2 | 5 . . |

|-------+-------+-------|

| . 4 . | 6 1 . | 2 3 . |

| . 2 . | . . . | . 1 4 |

| 3 . 1 | 2 4 . | . 5 6 |

*-----------------------*

It's a very special puzzle, because its that hard though 3 numbers are solved and the 3 and 5 only remain in empty x-wings. Note that 789 only are given in one box of the center band each. Now i remembered that Steve treated them as a group. So i call them x,y and z now. Starting with box 9 we easily get with basic moves for x

- Code: Select all
`*-----------------------*`

| 1 . 3 | . 2 . | . 4 5 |

| . 5 . | 4 . 1 | . 2 3 |

| 2 x 4 | 5 6 3 | 1 . . |

|-------+-------+-------|

| . . 2 | . 5 4 | 3 . 1 |

| 5 3 7 | 1 8 6 | 4 9 2 |

| 4 1 . | . . 2 | 5 . . |

|-------+-------+-------|

| . 4 . | 6 1 . | 2 3 x |

| . 2 . | . . . | y 1 4 |

| 3 . 1 | 2 4 x | z 5 6 |

*-----------------------*

Now in r9c2 there must be y in row 9, this gives directly r7c6=y, r7c3=5, r8c6=5, r7c1=z

- Code: Select all
`*-----------------------*`

| 1 . 3 | . 2 . | . 4 5 |

| . 5 . | 4 . 1 | . 2 3 |

| 2 x 4 | 5 6 3 | 1 . . |

|-------+-------+-------|

| . . 2 | . 5 4 | 3 . 1 |

| 5 3 7 | 1 8 6 | 4 9 2 |

| 4 1 . | . . 2 | 5 . . |

|-------+-------+-------|

| z 4 5 | 6 1 y | 2 3 x |

| . 2 . | . . 5 | y 1 4 |

| 3 y 1 | 2 4 x | z 5 6 |

*-----------------------*

Further with simple moves r1c4=y, r2c5=x, r1c6=z, r2c3=z, r2c1=y, r1c2=6, r2c7=6, r1c7=x

- Code: Select all
`*-----------------------*`

| 1 6 3 | y 2 z | x 4 5 |

| y 5 z | 4 x 1 | 6 2 3 |

| 2 x 4 | 5 6 3 | 1 . . |

|-------+-------+-------|

| . . 2 | . 5 4 | 3 . 1 |

| 5 3 7 | 1 8 6 | 4 9 2 |

| 4 1 . | . . 2 | 5 . . |

|-------+-------+-------|

| z 4 5 | 6 1 y | 2 3 x |

| . 2 . | . . 5 | y 1 4 |

| 3 y 1 | 2 4 x | z 5 6 |

*-----------------------*

Now y in box 4 is either 7 or in r6c3, in box 5 it is either 8 or in r6c5, so it cant be 9 and it must be in r4c8, then in r3c9 and z in r3c8.

- Code: Select all
`*-----------------------*`

| 1 6 3 | y 2 z | x 4 5 |

| y 5 z | 4 x 1 | 6 2 3 |

| 2 x 4 | 5 6 3 | 1 z y |

|-------+-------+-------|

| . . 2 | . 5 4 | 3 y 1 |

| 5 3 7 | 1 8 6 | 4 9 2 |

| 4 1 . | . . 2 | 5 . . |

|-------+-------+-------|

| z 4 5 | 6 1 y | 2 3 x |

| . 2 . | . . 5 | y 1 4 |

| 3 y 1 | 2 4 x | z 5 6 |

*-----------------------*

So z also sees 9 and must be 8, then y is 7 and x is 9.

This solves the puzzle without having any hard move.