Amethyst Deceiver

Post puzzles for others to solve here.

Amethyst Deceiver

Postby coloin » Tue Nov 26, 2024 10:55 pm

Code: Select all
+---+---+---+
|94.|.65|.8.|
|5.7|4.8|...|
|.68|79.|.4.|
+---+---+---+
|.75|9..|4..|
|4.6|8..|...|
|.9.|...|...|
+---+---+---+
|...|6..|25.|
|65.|...|874|
|...|...|.61|
+---+---+---+  Amethyst Deceiver

Wondering if this is a normal puzzle...
coloin
 
Posts: 2518
Joined: 05 May 2005
Location: Devon

Re: Amethyst Deceiver

Postby yzfwsf » Wed Nov 27, 2024 12:30 am

Locked Candidates 1 (Pointing): 8 in b4 => r7c1<>8,r9c1<>8
Naked Triple: in r2c5,r4c5,r8c5 => r5c5<>123,r6c5<>123,r7c5<>13,r9c5<>23,
Almost Locked Triple: 123 in r5c789 r5c26 r46c8 => r4c9<>23 r6c7<>13 r6c9<>23 r5c6<>7
AFW + Triplet Oddagon Type 1: 123r2c25,r3c16,r4c15,r5c26,r16c3 => r4c1<>123
==>skfr:6.8/2.3/2.3
yzfwsf
 
Posts: 924
Joined: 16 April 2019

Re: Amethyst Deceiver

Postby denis_berthier » Wed Nov 27, 2024 4:18 am

.
coloin wrote:Wondering if this is a normal puzzle...

For me, yes: normal among puzzles with a tridagon. It is in T&E(2) with BxB = 9. Generally, such puzzles behave much like T&E(3) puzzles.

Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 9      4      123    ! 123    6      5      ! 137    8      237    !
   ! 5      123    7      ! 4      123    8      ! 1369   1239   2369   !
   ! 123    6      8      ! 7      9      123    ! 135    4      235    !
   +----------------------+----------------------+----------------------+
   ! 1238   7      5      ! 9      123    1236   ! 4      123    2368   !
   ! 4      123    6      ! 8      12357  1237   ! 13579  1239   23579  !
   ! 1238   9      123    ! 1235   123457 123467 ! 13567  123    235678 !
   +----------------------+----------------------+----------------------+
   ! 137    138    1349   ! 6      13478  13479  ! 2      5      39     !
   ! 6      5      1239   ! 123    123    1239   ! 8      7      4      !
   ! 237    238    2349   ! 235    234578 23479  ! 39     6      1      !
   +----------------------+----------------------+----------------------+
185 candidates.


naked-triplets-in-a-column: c5{r2 r4 r8}{n3 n2 n1} ==> r9c5≠3, r9c5≠2, r7c5≠3, r7c5≠1, r6c5≠3, r6c5≠2, r6c5≠1, r5c5≠3, r5c5≠2, r5c5≠1

Two impossible patterns at work (EL14c30 is the second most frequent one). The EL14c30 pattern is detected at the start, with 6 guardians, but it is used only at the end, after the number of guardians has been reduced to 1 due to several candidate eliminations by other rules.

Code: Select all
Trid-OR3-relation for digits 1, 2 and 3 in blocks:
        b1, with cells (marked #): r1c3, r2c2, r3c1
        b2, with cells (marked #): r1c4, r2c5, r3c6
        b4, with cells (marked #): r6c3, r5c2, r4c1
        b5, with cells (marked #): r6c4, r5c6, r4c5
with 3 guardians (in cells marked @): n8r4c1 n7r5c6 n5r6c4
   +----------------------+----------------------+----------------------+
   ! 9      4      123#   ! 123#   6      5      ! 137    8      237    !
   ! 5      123#   7      ! 4      123#   8      ! 1369   1239   2369   !
   ! 123#   6      8      ! 7      9      123#   ! 135    4      235    !
   +----------------------+----------------------+----------------------+
   ! 1238#@ 7      5      ! 9      123#   1236   ! 4      123    2368   !
   ! 4      123#   6      ! 8      57     1237#@ ! 13579  1239   23579  !
   ! 1238   9      123#   ! 1235#@ 457    123467 ! 13567  123    235678 !
   +----------------------+----------------------+----------------------+
   ! 137    138    1349   ! 6      478    13479  ! 2      5      39     !
   ! 6      5      1239   ! 123    123    1239   ! 8      7      4      !
   ! 237    238    2349   ! 235    4578   23479  ! 39     6      1      !
   +----------------------+----------------------+----------------------+


EL14c30s-OR6-relation for digits: 1, 2 and 3
   in cells (marked #): (r8c5 r8c3 r4c5 r4c1 r6c6 r6c3 r5c6 r5c2 r2c5 r2c2 r3c6 r3c1 r1c4 r1c3)
   with 6 guardians (in cells marked @) : n9r8c3 n8r4c1 n4r6c6 n6r6c6 n7r6c6 n7r5c6 
   +----------------------------+----------------------------+----------------------------+
   ! 9        4        123#     ! 123#     6        5        ! 137      8        237      !
   ! 5        123#     7        ! 4        123#     8        ! 1369     1239     2369     !
   ! 123#     6        8        ! 7        9        123#     ! 135      4        235      !
   +----------------------------+----------------------------+----------------------------+
   ! 1238#@   7        5        ! 9        123#     1236     ! 4        123      2368     !
   ! 4        123#     6        ! 8        57       1237#@   ! 13579    1239     23579    !
   ! 1238     9        123#     ! 1235     457      123467#@ ! 13567    123      235678   !
   +----------------------------+----------------------------+----------------------------+
   ! 137      138      1349     ! 6        478      13479    ! 2        5        39       !
   ! 6        5        1239#@   ! 123      123#     1239     ! 8        7        4        !
   ! 237      238      2349     ! 235      4578     23479    ! 39       6        1        !
   +----------------------------+----------------------------+----------------------------+


Trid-OR3-whip[4]: c9n8{r6 r4} - OR3{{n8r4c1 n5r6c4 | n7r5c6}} - b6n7{r5c7 r6c7} - b6n6{r6c7 .} ==> r6c9≠5
whip[5]: r5c5{n7 n5} - r6n5{c5 c7} - r6n7{c7 c9} - b6n6{r6c9 r4c9} - c9n8{r4 .} ==> r5c6≠7

At least one candidate of a previous Trid-OR3-relation between candidates n8r4c1 n7r5c6 n5r6c4 has just been eliminated.
There remains a Trid-OR2-relation between candidates: n8r4c1 n5r6c4

At least one candidate of a previous EL14c30s-OR6-relation between candidates n9r8c3 n8r4c1 n4r6c6 n6r6c6 n7r6c6 n7r5c6 has just been eliminated.
There remains an EL14c30s-OR5-relation between candidates: n9r8c3 n8r4c1 n4r6c6 n6r6c6 n7r6c6

Trid-OR2-ctr-whip[5]: r5c5{n7 n5} - r6n5{c5 c7} - r6n6{c7 c9} - c9n8{r6 r4} - OR2{{n5r6c4 n8r4c1 | .}} ==> r6c6≠7

At least one candidate of a previous EL14c30s-OR5-relation between candidates n9r8c3 n8r4c1 n4r6c6 n6r6c6 n7r6c6 has just been eliminated.
There remains an EL14c30s-OR4-relation between candidates: n9r8c3 n8r4c1 n4r6c6 n6r6c6

whip[1]: c6n7{r9 .} ==> r7c5≠7, r9c5≠7
whip[5]: c9n8{r4 r6} - b6n6{r6c9 r6c7} - r6n7{c7 c5} - r5c5{n7 n5} - b6n5{r5c7 .} ==> r4c9≠2
whip[5]: c9n8{r4 r6} - b6n6{r6c9 r6c7} - r6n7{c7 c5} - r5c5{n7 n5} - b6n5{r5c7 .} ==> r4c9≠3

EL14c30s-OR4-relation between candidates n9r8c3, n8r4c1, n4r6c6 and n6r6c6
+ same valence for candidates n8r4c1 and n6r6c6 via c-chain[4]: n8r4c1,n8r4c9,n6r4c9,n6r4c6,n6r6c6
==> EL14c30s-OR4-relation can be split into two EL14c30s-OR3-relations with respective lists of guardians:
n9r8c3 n4r6c6 n6r6c6 and n9r8c3 n8r4c1 n4r6c6 .

Trid-OR2-whip[4]: OR2{{n5r6c4 | n8r4c1}} - r4c9{n8 n6} - c6n6{r4 r6} - r6n4{c6 .} ==> r6c5≠5
whip[5]: r6n5{c7 c4} - r5c5{n5 n7} - b6n7{r5c7 r6c9} - c9n8{r6 r4} - b6n6{r4c9 .} ==> r6c7≠1
whip[5]: r6n5{c7 c4} - r5c5{n5 n7} - b6n7{r5c7 r6c9} - c9n8{r6 r4} - b6n6{r4c9 .} ==> r6c7≠3
whip[5]: c9n8{r6 r4} - b6n6{r4c9 r6c7} - r6n5{c7 c4} - r5c5{n5 n7} - b6n7{r5c7 .} ==> r6c9≠2
whip[5]: c9n8{r6 r4} - b6n6{r4c9 r6c7} - r6n5{c7 c4} - r5c5{n5 n7} - b6n7{r5c7 .} ==> r6c9≠3
Trid-OR2-whip[5]: c6n6{r6 r4} - r4c9{n6 n8} - OR2{{n8r4c1 | n5r6c4}} - r5c5{n5 n7} - r6c5{n7 .} ==> r6c6≠4
singles ==> r6c5=4, r7c5=8, r9c5=5, r5c5=7, r6c4=5, r9c2=8

At least one candidate of a previous EL14c30s-OR3-relation between candidates n9r8c3 n4r6c6 n6r6c6 has just been eliminated.
There remains an EL14c30s-OR2-relation between candidates: n9r8c3 n6r6c6

At least one candidate of a previous EL14c30s-OR3-relation between candidates n9r8c3 n8r4c1 n4r6c6 has just been eliminated.
There remains an EL14c30s-OR2-relation between candidates: n9r8c3 n8r4c1

hidden-pairs-in-a-block: b8{n4 n7}{r7c6 r9c6} ==> r9c6≠9, r9c6≠3, r9c6≠2, r7c6≠9, r7c6≠3, r7c6≠1
hidden-single-in-a-block ==> r8c6=9

At least one candidate of a previous EL14c30s-OR2-relation between candidates n9r8c3 n6r6c6 has just been eliminated.
There remains an EL14c30s-OR1-relation between candidates: n6r6c6

EL14c30s-ORk-relation with only one candidate => r6c6=6

The end is trivial, in S2
denis_berthier
2010 Supporter
 
Posts: 4300
Joined: 19 June 2007
Location: Paris

Re: Amethyst Deceiver

Postby coloin » Wed Nov 27, 2024 12:34 pm

I only raised this as the 3-template in the soluton grid doesnt have the diagonal clues in box 4 for the tridagon in box 5
which i thought was a prerequisite .. but apparently not !
Code: Select all
+---+---+---+
|..1|2..|3..|
|.2.|.3.|.1.|
|3..|..1|..2|
+---+---+---+
|...|.13|.2.|
|.3.|..2|1..|
|1.2|...|.3.|
+---+---+---+
|.1.|...|2.3|
|..3|12.|...|
|2..|3..|..1|
+---+---+---+
coloin
 
Posts: 2518
Joined: 05 May 2005
Location: Devon

Re: Amethyst Deceiver

Postby shye » Wed Nov 27, 2024 12:52 pm

yzfwsf wrote:AFW + Triplet Oddagon Type 1: 123r2c25,r3c16,r4c15,r5c26,r16c3 => r4c1<>123

awesome!! beat me to it :lol:
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Amethyst Deceiver

Postby shye » Wed Nov 27, 2024 1:09 pm

.
to continue the solve after yzf's start:

Code: Select all
,---------------,---------------,------------------,
| 9    4    123 |A123  6    5   |b1+3   8     7    |
| 5    123  7   | 4    123  8   | 6     1239  239  |
| 123  6    8   | 7    9    123 | 135   4     235  |
:---------------+---------------+------------------:
| 8    7    5   | 9    123  123 | 4     123   6    |
| 4    123  6   | 8    7    123 | 1359  1239  2359 |
| 123  9    123 | 5    4    6   | 7     123   8    |
:---------------+---------------+------------------:
| 137  13   49  | 6    8    47  | 2     5     39   |
| 6    5   B2+3 |C123  123  9   | 8     7     4    |
| 237  8    49  | 23   5    47  | 39    6     1    |
'---------------'---------------'------------------'

label FWT as ABC
B in r1 is in c7
+3B

Code: Select all
,------------,--------------,---------------,
| 9   4   12 | 12  6    5   | 3   8     7   |
| 5  #23  7  | 4  #123  8   | 6  *129   29  |
| 3-1 6   8  | 7   9   #123 |*15  4     25  |
:------------+--------------+---------------:
| 8   7   5  | 9   123  123 | 4   123   6   |
| 4  #23  6  | 8   7   #123 |*15  1239  259 |
| 13  9   12 | 5   4    6   | 7   23    8   |
:------------+--------------+---------------:
| 7   1   9  | 6   8    4   | 2   5     3   |
| 6   5   3  | 12  12   9   | 8   7     4   |
| 2   8   4  | 3   5    7   | 9   6     1   |
'------------'--------------'---------------'

bivalue oddagon (23r25c26b2) w three guardians (1r2c5, 1r35c6)
endofinned swordfish:
1g, 1b3, 1c7 covered by r235 (endo fin r3c7)
-1r3c1 stte
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Amethyst Deceiver

Postby eleven » Thu Nov 28, 2024 2:44 pm

What is an AFW ?
I can see 5r6c4 (forced by 8r4c1), and only later, that there can't be a remote triple in r1c34,r6c3 => 8r4c1.
eleven
 
Posts: 3196
Joined: 10 February 2008

Re: Amethyst Deceiver

Postby totuan » Thu Nov 28, 2024 3:27 pm

My path, same as eleven's.
eleven wrote:What is an AFW ?

Maybe: "Almost FireWorks" :D

Thanks for the puzzle!
totuan
totuan
 
Posts: 251
Joined: 25 May 2010
Location: vietnam

Re: Amethyst Deceiver

Postby yzfwsf » Thu Nov 28, 2024 10:31 pm

AFW: Almost Firework(Triple)
If r4c1<>8, then r6c4=5 and RT is required, but the presence of AFW makes RT impossible, so r4c1=8
yzfwsf
 
Posts: 924
Joined: 16 April 2019

Re: Amethyst Deceiver

Postby eleven » Thu Nov 28, 2024 11:09 pm

Well, as said, i saw that later after filling in singles and the 49 pair.
I wonder, how it can be seen without that. If not, this line is very cryptic (and also missing the cells r16c4).
A diagram would have been helpful.
btw i saw very different moves, all called fireworks, so even the meaning of AFW did not help me (remote triple had made it clearer).
eleven
 
Posts: 3196
Joined: 10 February 2008

Re: Amethyst Deceiver

Postby yzfwsf » Fri Nov 29, 2024 4:12 am

Image
This is a screenshot of the software output.
yzfwsf
 
Posts: 924
Joined: 16 April 2019

Re: Amethyst Deceiver

Postby eleven » Fri Nov 29, 2024 6:31 am

Thanks, can see it now. (no firework triple needed, 5r6c4 -> 9r8c6, r9c4=r8c3, no RT possible)
eleven
 
Posts: 3196
Joined: 10 February 2008

Re: Amethyst Deceiver

Postby yzfwsf » Fri Nov 29, 2024 11:46 am

eleven wrote:Thanks, can see it now. (no firework triple needed, 5r6c4 -> 9r8c6, r9c4=r8c3, no RT possible)

If there were no fireworks, I don't know how you were sure RT was impossible.
yzfwsf
 
Posts: 924
Joined: 16 April 2019

Re: Amethyst Deceiver

Postby eleven » Fri Nov 29, 2024 12:30 pm

Since r8c3 and r9c4 must hold the same digit (2 or 3), this digit is missing in the RT cells (r16c3, r1c4).
Last edited by eleven on Fri Nov 29, 2024 12:54 pm, edited 1 time in total.
eleven
 
Posts: 3196
Joined: 10 February 2008

Re: Amethyst Deceiver

Postby totuan » Fri Nov 29, 2024 12:52 pm

It’s not hard to prove: if tridagon with 2 guardians that one at rectangle and other cells at rectangle are not triple => the guardian is not at rectangle must be true – no need to prove the guardian at rectangle is true or fail.
Code: Select all
 *-----------------------------------------------------------------------------*
 | 9       4      #123A    |#123A    6       5       | 137     8       237     |
 | 5      #123     7       | 4      #123     8       | 1369    1239    2369    |
 |#123     6       8       | 7       9      #123     | 135     4       235     |
 |-------------------------+-------------------------+-------------------------|
 |#123+8   7       5       | 9      #123     1236    | 4       123     2368    |
 | 4      #123     6       | 8       57     #123     | 13579   1239    23579   |
 | 1238    9      #123A    |#123+5   457     123467  | 13567   123     235678  |
 |-------------------------+-------------------------+-------------------------|
 | 137     138     1349    | 6       478     13479   | 2       5       39      |
 | 6       5      &1239    | 123     123     1239    | 8       7       4       |
 | 237     238     2349    |&235     4578    23479   | 39      6       1       |
 *-----------------------------------------------------------------------------*

For this one (after r5c6<>7) - prove (123) A-marked cells is not triple => r4c1=8:
- Tridagon (123) #-marked cells => (8)r4c1=(5)r6c4
- (2|3)r9c4 lead to (2|3)r8c3 by (123)R8
- RT*A(123)r1c34,r6c3=(8)r4c1


(8)r4c1==(5)r6c4-(5)=(2|3)r9c4,r8c3-RT*A(123)r1c34,r6c3==(8)r4c1 => r4c1=8

totuan
totuan
 
Posts: 251
Joined: 25 May 2010
Location: vietnam

Next

Return to Puzzles