by expanding the bivalve cell from a size 1 als =>
into an als consisting of N cells holding N+1 digits we can move this technique up to higher power.
simplistic examples: as this technique as an als has way to many examples to nail them all down
formations for the strong links featured in m-wing thread remains the same.
the eliminations process is a bit more technical:
peers of Als cells holding "B" candidate and peers of the "B" end point cells can be eliminated for "B"
- Code: Select all
. . . | . . . | . . . . . . | . / . | . . .
. abc . | bc . . | . -b . . ab . | bc a . | . -b .
. . . | . . . | . . . . . . | . / . | . . .
----------+----------+--------- ----------+----------+---------
. . . | . . . | . . . . . . | . / . | . . .
/ a / | / ab+ / | / b / / / / | / ab+ / | / b /
. . . | . . . | . . . . . . | . / . | . . .
----------+----------+--------- ----------+----------+---------
. . . | . . . | . . . . . . | . / . | . . .
. . . | . . . | . . . . . . | . / . | . . .
. . . | . . . | . . . . . . | . / . | . . .
Ring variations become a bit more technical:
the "b" link must be peers of all b cells in the Als .
then eliminate {z} all non [a,b] candidates in als A from any peer cells of all [z] cells in als A.
plus the regular w-ring eliminations caused by the loop.
- Code: Select all
example: Als - M - Ring
+------------------+------------------------+----------------+
| -3 -13 -3 | . . . | . . . |
| -23 (123) (23) | -23 1-3(2) -23 | -23 -23 1-23 |
| -3 -13 -3 | . . . | . . . |
+------------------+------------------------+----------------+
| . -1 . | . . . | . . . |
| . 2(1) . | . -3456789(12) . | . . . |
| . -1 . | . . . | . . . |
+------------------+------------------------+----------------+
| . -1 . | . . . | . . . |
| . -1 . | . . . | . . . |
| . -1 . | . . . | . . . |
+------------------+------------------------+----------------+
this post is created for my own endeavors in programing it into my solver: