Ronk wrote:If r4c7=1, then r1c8<>9
... are both valid. (I haven't actually seen a proof for the later though.)
 3   1  9  | 6  7   48 | 248  25 458 
 6   7  2  | 38 5   348| 48   1  9 
 5   8  4  | 2  9   1  | 7    6  3    
-----------+-----------+------------ 
 278 4  137| 9  238 5  | 6    27 18 
 28  6  35 | 7  1   38 | 2348 9  458 
 9   23 157| 4  238 6  | 238  57 15 
-----------+-----------+------------ 
 4   9  8  | 5  6   2  | 1    3  7 
 27  23 37 | 1  4   9  | 5    8  6 
 1   5  6  | 38 38  7  | 9    4  2 
Carcul wrote:Ronk wrote:If r4c7=1, then r1c8<>9
... are both valid. (I haven't actually seen a proof for the later though.)
I don't think this last one is valid. The only thing that we can say with certain is, if there is only one solution, we cannot have r1c8<>9 and r4c7<>1. So, if r4c7<>1 => r1c8=9, if r1c8<>9 => r4c7=1.
Carcul wrote:We have a type 2 AUR in cells r1c6, r1c7, r2c6, and r2c7, and in the solution of this grid it turns out that r2c6=3 and r1c7=2.
 3    1   9   | 6   7    48  | 48+2  25  458  
 6    7   2   | 38  5    48+3| 48    1   9  
 5    8   4   | 2   9    1   | 7     6   3     
--------------+--------------+--------------- 
 278  4   137 | 9   238  5   | 6     27  18  
 28   6   5   | 7   1    38  | 2348  9   458  
 9    23  157 | 4   28   6   | 238   57  15  
--------------+--------------+--------------- 
 4    9   8   | 5   6    2   | 1     3   7  
 27   23  37  | 1   4    9   | 5     8   6  
 1    5   6   | 38  38   7   | 9     4   2  ronk wrote:My starting implication chains are based on the fact that for this type 2 AUR example ... either r1c8=9 or r4c7=1 and therefore ...
r4c7=1 => r4c9<>1 => r4c9=4 => r4c8<>4 => r4c8=8
r4c7<>1 => r1c8=9 => r1c8<>8 => r4c8=8 => r4c8<>4
Where is the error in logic? Is is possible such a simple deduction is not expressible with a nice loop simpler than the one you posted? Tell me it isn't so!
Jeff wrote:[r4c8]-4-[r4c9]-1-(AUR:[r4c7][r1c7][r4c8]-4|8-[r1c8])=8=[r4c8] => r4c8<>4 => r4c8=8
Jeff wrote:Carcul, I don't disagree with your notation, but just to suggest an alternative for brainstorming.
Carcul wrote:Jeff wrote:[r4c8]-4-[r4c9]-1-(AUR:[r4c7][r1c7][r4c8]-4|8-[r1c8])=8=[r4c8] => r4c8<>4 => r4c8=8
I don't want to be boring or arrogant, but I still don't agree with this loop. If r4c8=4 then there is no contradiction in the cells that you have used in the loop.
Carcul wrote:Yes, I now my notation might be confusing sometimes (or manytimes), but I prefer to write a "condensed" notation and then explain separately the origin of a link if necessary (this is just a personal preference).
Carcul wrote:what is the exact meaning of the word "brainstorming"?
Carcul wrote:And how about the exercise of AURs that I posted above, refering to a grid in the thread "Nice loops for elementary level players - the x-cycle", what do you think?
+----------------+----------------+----------------+
| 4    1258 12   | 15   9    7    | 6    158  3    | 
| 38   158  9    | 6    134  34   | 7    158  2    | 
| 367  156  1367 | 135  8    2    | 9    15   4    | 
+----------------+----------------+----------------+
| 9    3    1267 |^17   1246 46   | 8   ^67   5    | 
| 2678 268  4    | 9   *236  5    |*23   67   1    | 
| 267  126  5    | 137 *1236 8    |*23   4    9    | 
+----------------+----------------+----------------+
| 2356 7    236  | 4    356  36   | 1    9    8    | 
| 1    4    8    | 2    7    9    | 5    3    6    | 
| 356  9    36   | 8    356  1    | 4    2    7    | 
+----------------+----------------+----------------+
 we get  r4c6<>6
Carcul wrote:In chain notation we have:
[r4c6]-6-[r5c5|r6c5]-1-[r4c4]-7-[r4c8]-6-[r4c6] => r4c6<>6.
Ronk wrote:r5c5 and r6c5 "behave" like a single bivalued cell.
 1     45+2  9     | 6     3     45    | 7     25    8   
 235   8     35    | 7     1     9     | 25    4     6   
 6     45    7     | 2     8     45    | 3     1     9   
-------------------+-------------------+-----------------
 345   25    45+23 | 45    9     7     | 6     8     1   
 45    7     1     | 3     6     8     | 245   9     25  
 9     6     8     | 1     45    2     | 45    3     7   
-------------------+-------------------+-----------------
 245   3     6     | 9     45    1     | 8     7     245 
 8     1     45+2  | 45    7     6     | 9     25    3   
 7     9     45    | 8     2     3     | 1     6     45  
Ronk wrote:In your AUR type numbering, which type number is for the simplest of AURs ... the AUR+1?
This example has an AUR (45) + 1 at cells r1c26 and r3c26: