.
- Code: Select all
1...8..7...326.9...2...3.5.7..4..1....83.6....9..5..2.6..1..7...5...2..9....3..8. SER = 7.1
1...8..7...32..9...2...3.5.7..4..1....83.6....9..5..2.6..1..7...5...2.19....3..8. SER = 6.7
Two preliminary remarks:
- in Sudoku, "almost the same puzzle" (say measured in terms of Hamming distance) doesn't imply much in terms of difficulty (whichever way you measure it). As shown by the tridagon examples, eliminating a single candidate can bring a puzzle down from T&E(3) to BC4;
- "difficulty" doesn't mean anything if you don't say how you measure it. In the present case, difficulty is reversed, whether you consider simplest-first solution or number of steps. This is quite common.
The two puzzles are not very different in difficulty in my rating system: both can be solved within S3Fin+BC3.
The first has slightly fewer candidates at the start (which is not meaningful) but it has a slightly longer simplest-first resolution path.
They are quite different if you consider the number of steps (restricted to chains of reasonable length): the first puzzle has two 1-step solutions in BC4, while the second doesn't have any, even in W5. Even for a 2-step solution, it requires W5.
1) Simplest-first solution of first puzzle:
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 1 46 4569 ! 59 8 459 ! 2346 7 2346 !
! 458 478 3 ! 2 6 1457 ! 9 14 148 !
! 489 2 4679 ! 79 1479 3 ! 468 5 1468 !
+-------------------+-------------------+-------------------+
! 7 36 256 ! 4 29 89 ! 1 369 3568 !
! 245 14 8 ! 3 1279 6 ! 45 49 457 !
! 34 9 146 ! 78 5 178 ! 3468 2 34678 !
+-------------------+-------------------+-------------------+
! 6 348 249 ! 1 49 4589 ! 7 34 2345 !
! 348 5 147 ! 678 47 2 ! 346 1346 9 !
! 249 147 12479 ! 5679 3 4579 ! 2456 8 12456 !
+-------------------+-------------------+-------------------+
169 candidates.
hidden-pairs-in-a-block: b7{n3 n8}{r7c2 r8c1} ==> r8c1≠4, r7c2≠4
hidden-pairs-in-a-block: b4{n2 n5}{r4c3 r5c1} ==> r5c1≠4, r4c3≠6
hidden-pairs-in-a-row: r1{n2 n3}{c7 c9} ==> r1c9≠6, r1c9≠4, r1c7≠6, r1c7≠4
whip[1]: b3n6{r3c9 .} ==> r3c3≠6
finned-x-wing-in-columns: n9{c1 c4}{r9 r3} ==> r3c5≠9
finned-x-wing-in-columns: n3{c2 c8}{r4 r7} ==> r7c9≠3
finned-swordfish-in-columns: n5{c7 c1 c4}{r9 r5 r2} ==> r2c6≠5
singles ==> r2c1=5, r5c1=2, r4c3=5, r4c5=2
swordfish-in-columns: n8{c1 c4 c7}{r3 r8 r6} ==> r6c9≠8, r6c6≠8, r3c9≠8
biv-chain[3]: r1c2{n4 n6} - b4n6{r4c2 r6c3} - b4n1{r6c3 r5c2} ==> r5c2≠4
singles ==> r5c2=1, r6c6=1, r3c5=1
whip[1]: c5n4{r8 .} ==> r7c6≠4, r9c6≠4
whip[1]: r5n4{c9 .} ==> r6c7≠4, r6c9≠4
x-wing-in-columns: n7{c2 c6}{r2 r9} ==> r9c4≠7, r9c3≠7
biv-chain[3]: r6n4{c1 c3} - b4n6{r6c3 r4c2} - r1c2{n6 n4} ==> r3c1≠4
biv-chain[3]: r8n8{c4 c1} - r3c1{n8 n9} - r3c4{n9 n7} ==> r8c4≠7
biv-chain[3]: c5n4{r7 r8} - b8n7{r8c5 r9c6} - r9c2{n7 n4} ==> r7c3≠4
biv-chain[3]: c8n6{r4 r8} - r8c4{n6 n8} - r6n8{c4 c7} ==> r6c7≠6
biv-chain[3]: c1n3{r8 r6} - r6c7{n3 n8} - c4n8{r6 r8} ==> r8c1≠8
stte
2) Simplest-first solution of second puzzle:
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 1 46 4569 ! 569 8 459 ! 2346 7 2346 !
! 458 4678 3 ! 2 1467 1457 ! 9 46 1468 !
! 489 2 4679 ! 679 14679 3 ! 468 5 1468 !
+-------------------+-------------------+-------------------+
! 7 36 256 ! 4 29 89 ! 1 369 3568 !
! 245 14 8 ! 3 1279 6 ! 45 49 457 !
! 34 9 146 ! 78 5 178 ! 3468 2 34678 !
+-------------------+-------------------+-------------------+
! 6 348 249 ! 1 49 4589 ! 7 34 2345 !
! 348 5 47 ! 678 467 2 ! 346 1 9 !
! 249 147 12479 ! 5679 3 4579 ! 2456 8 2456 !
+-------------------+-------------------+-------------------+
173 candidates.
hidden-pairs-in-a-block: b7{n3 n8}{r7c2 r8c1} ==> r8c1≠4, r7c2≠4
hidden-pairs-in-a-block: b4{n2 n5}{r4c3 r5c1} ==> r5c1≠4, r4c3≠6
hidden-pairs-in-a-row: r1{n2 n3}{c7 c9} ==> r1c9≠6, r1c9≠4, r1c7≠6, r1c7≠4
x-wing-in-columns: n3{c2 c8}{r4 r7} ==> r7c9≠3, r4c9≠3
finned-x-wing-in-columns: n9{c1 c4}{r9 r3} ==> r3c5≠9
finned-swordfish-in-columns: n5{c7 c1 c4}{r9 r5 r2} ==> r2c6≠5
singles ==> r2c1=5, r5c1=2, r4c3=5, r4c5=2
swordfish-in-columns: n8{c1 c4 c7}{r3 r8 r6} ==> r6c9≠8, r6c6≠8, r3c9≠8
biv-chain[3]: r1c2{n4 n6} - b4n6{r4c2 r6c3} - b4n1{r6c3 r5c2} ==> r5c2≠4
singles ==> r5c2=1, r6c6=1, r9c3=1, r7c3=2, r9c1=9, r1c6≠9
whip[1]: r5n4{c9 .} ==> r6c7≠4, r6c9≠4
hidden-pairs-in-a-column: c6{n8 n9}{r4 r7} ==> r7c6≠5, r7c6≠4
singles ==> r7c9=5, r5c7=5
x-wing-in-columns: n7{c2 c6}{r2 r9} ==> r9c4≠7, r2c5≠7
t-whip[2]: r7n4{c5 c8} - c7n4{r9 .} ==> r3c5≠4
biv-chain[3]: r6n4{c1 c3} - b4n6{r6c3 r4c2} - r1c2{n6 n4} ==> r3c1≠4
stte
3) The first puzzle has two 1-step solutions in BC4:
- Code: Select all
biv-chain[4]: r6c4{n7 n8} - b8n8{r8c4 r7c6} - c2n8{r7 r2} - b1n7{r2c2 r3c3} ==> r3c4≠7
stte
- Code: Select all
biv-chain[4]: r8n8{c4 c1} - b7n3{r8c1 r7c2} - r4c2{n3 n6} - c8n6{r4 r8} ==> r8c4≠6
stte
4) The second puzzle doesn't have any 1-step solution in W5, let alone in BC4. Even for 2-step solutions, it requires W5. Here's one:
- Code: Select all
finned-swordfish-in-rows: n5{r7 r4 r2}{c6 c9 c3} ==> r1c3≠5
singles ==> r2c1=5, r4c3=5, r5c1=2, r4c5=2
whip[5]: r1c2{n6 n4} - r5c2{n4 n1} - r6c3{n1 n4} - r8c3{n4 n7} - r9c2{n7 .} ==> r4c2≠6
stte