.
Thanks for all the solutions.
I chose this (hard) puzzle because it doesn't have any 1-step or 2-step solution by whips of reasonable length (I tried upto 8). I was curious to see which solutions would come out.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 35 234 8 ! 129 6 124 ! 7 1459 1349 !
! 57 9 247 ! 1278 3 12478 ! 58 6 148 !
! 1 347 6 ! 789 5 478 ! 389 49 2 !
+-------------------+-------------------+-------------------+
! 3678 13478 1347 ! 5 18 27 ! 2369 249 3469 !
! 2 5 9 ! 36 4 36 ! 1 8 7 !
! 3678 13478 1347 ! 27 18 9 ! 2356 245 346 !
+-------------------+-------------------+-------------------+
! 4 1378 137 ! 1368 2 1368 ! 69 179 5 !
! 9 6 12 ! 4 7 5 ! 28 3 18 !
! 378 12378 5 ! 1368 9 1368 ! 4 127 16 !
+-------------------+-------------------+-------------------+
158 candidates.
There is a simplest-first solution in W5, which classifies it as hard, with probably a few unnecessary steps: Show biv-chain[4]: r2c1{n7 n5} - r2c7{n5 n8} - r8c7{n8 n2} - c3n2{r8 r2} ==> r2c3≠7
whip[4]: c9n9{r4 r1} - c9n3{r1 r6} - c9n4{r6 r2} - r3c8{n4 .} ==> r4c9≠6
z-chain[5]: b7n2{r9c2 r8c3} - r8c7{n2 n8} - r2c7{n8 n5} - r1n5{c8 c1} - b1n3{r1c1 .} ==> r9c2≠3
z-chain[5]: b9n6{r9c9 r7c7} - r7n9{c7 c8} - r3c8{n9 n4} - r2c9{n4 n8} - r8c9{n8 .} ==> r9c9≠1
singles ==> r9c9=6, r7c7=9
biv-chain[3]: r6n6{c1 c7} - c7n5{r6 r2} - r2c1{n5 n7} ==> r6c1≠7
t-whip[5]: r9n2{c2 c8} - r8c7{n2 n8} - r2c7{n8 n5} - r2c1{n5 n7} - r9n7{c1 .} ==> r9c2≠1, r9c2≠8
whip[5]: b7n2{r9c2 r8c3} - r8c7{n2 n8} - r3c7{n8 n3} - r3c2{n3 n4} - r2c3{n4 .} ==> r9c2≠7
singles ==> r9c2=2, r8c3=1, r8c9=8, r8c7=2, r2c3=2
whip[1]: c3n4{r6 .} ==> r4c2≠4, r6c2≠4
whip[1]: b9n1{r9c8 .} ==> r1c8≠1
biv-chain[4]: r3c8{n4 n9} - b2n9{r3c4 r1c4} - c4n2{r1 r6} - c8n2{r6 r4} ==> r4c8≠4
biv-chain[4]: c2n4{r1 r3} - r3c8{n4 n9} - r4c8{n9 n2} - c6n2{r4 r1} ==> r1c6≠4
biv-chain[4]: r2n4{c6 c9} - b3n1{r2c9 r1c9} - r1c6{n1 n2} - r4c6{n2 n7} ==> r2c6≠7
finned-x-wing-in-rows: n7{r2 r6}{c4 c1} ==> r4c1≠7
biv-chain[4]: r6n5{c8 c7} - r2n5{c7 c1} - r2n7{c1 c4} - r6c4{n7 n2} ==> r6c8≠2
singles ==> r4c8=2, r4c6=7, r6c4=2, r1c6=2, r4c9=9, r4c3=4
finned-x-wing-in-rows: n3{r3 r4}{c7 c2} ==> r6c2≠3
biv-chain[3]: r3c8{n4 n9} - r1n9{c8 c4} - r1n1{c4 c9} ==> r1c9≠4
biv-chain[3]: c9n4{r2 r6} - c9n3{r6 r1} - r1c2{n3 n4} ==> r1c8≠4
hidden-single-in-a-row ==> r1c2=4
biv-chain[3]: b1n3{r3c2 r1c1} - c9n3{r1 r6} - c3n3{r6 r7} ==> r7c2≠3
biv-chain[4]: r2c7{n8 n5} - b6n5{r6c7 r6c8} - r6n4{c8 c9} - r2n4{c9 c6} ==> r2c6≠8
naked-pairs-in-a-row: r2{c6 c9}{n1 n4} ==> r2c4≠1
biv-chain[3]: r2c4{n8 n7} - r3n7{c4 c2} - r7c2{n7 n8} ==> r7c4≠8
biv-chain[4]: b3n3{r3c7 r1c9} - r1n1{c9 c4} - r2c6{n1 n4} - r3c6{n4 n8} ==> r3c7≠8
stte
There's also a solution in W8 in 3 non-W1 steps:1) whip[8]: r9n2{c2 c8} - r8c7{n2 n8} - r2c7{n8 n5} - r1n5{c8 c1} - r1n3{c1 c9} - r3c7{n3 n9} - r7n9{c7 c8} - c8n7{r7 .} ==> r1c2≠2singles ==> r2c3=2, r8c3=1, r8c9=8, r8c7=2, r9c2=2
whip[1]: c3n4{r6 .} ==> r4c2≠4, r6c2≠4
2) whip[7]: r2c7{n8 n5} - c8n5{r1 r6} - c8n2{r6 r4} - r4c6{n2 n7} - r3c6{n7 n4} - r2n4{c6 c9} - b6n4{r4c9 .} ==> r3c7≠8singles ==> r2c7=8, r1c8=5, r1c1=3, r1c2=4, r3c2=7, r2c1=5, r3c7=3, r6c7=5
whip[1]: r9n3{c6 .} ==> r7c4≠3, r7c6≠3
whip[1]: c8n1{r9 .} ==> r9c9≠1
singles ==> r9c9=6, r7c7=9, r4c7=6, r6c1=6
3) biv-chain[4]: r2c9{n4 n1} - r2c4{n1 n7} - r6c4{n7 n2} - r6c8{n2 n4} ==> r6c9≠4, r3c8≠4, r4c9≠4stte
Notes:
- a solution in W8 for a puzzle in W5 is relatively absurd; it's using a bazooka to kill a hornet (not a fly; puzzles in W5 are worse than flies).
- this 3-step solution was obtained using the fewer steps algorithm. Contrary to the solution in W5, it is very unlikely a human solver could find it, in particular because the steps are separated by many singles (and whips[1]).