.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 2367 3567 8 ! 12367 4 12367 ! 9 137 135 !
! 2347 1 23457 ! 2378 9 2378 ! 578 6 345 !
! 9 3467 347 ! 13678 5 13678 ! 178 13478 2 !
+-------------------+-------------------+-------------------+
! 3467 34678 347 ! 9 18 24 ! 12567 1237 1356 !
! 5 2 1 ! 67 3 67 ! 4 9 8 !
! 3467 34678 9 ! 24 18 5 ! 1267 1237 136 !
+-------------------+-------------------+-------------------+
! 8 345 2345 ! 1345 6 9 ! 12 124 7 !
! 1347 9 347 ! 1348 2 1348 ! 168 5 146 !
! 124 45 6 ! 1458 7 148 ! 3 1248 9 !
+-------------------+-------------------+-------------------+
The puzzle is solvable in Z4 (and is therefore intermediate between the other two also wrt the W rating system).
Here is one solution in Z4, based on the simplest-first strategy: Show hidden-pairs-in-a-column: c3{n2 n5}{r2 r7} ==> r7c3≠4, r7c3≠3, r2c3≠7, r2c3≠4, r2c3≠3
biv-chain[3]: r7c7{n1 n2} - b7n2{r7c3 r9c1} - b7n1{r9c1 r8c1} ==> r8c7≠1, r8c9≠1
biv-chain[3]: r9c2{n4 n5} - b8n5{r9c4 r7c4} - r7n3{c4 c2} ==> r7c2≠4
biv-chain[3]: r7n4{c8 c4} - c4n5{r7 r9} - r9c2{n5 n4} ==> r9c8≠4
biv-chain[4]: b3n4{r3c8 r2c9} - r8c9{n4 n6} - r8c7{n6 n8} - c8n8{r9 r3} ==> r3c8≠1, r3c8≠3, r3c8≠7
z-chain[4]: b3n3{r1c9 r2c9} - b3n4{r2c9 r3c8} - r7n4{c8 c4} - r7n3{c4 .} ==> r1c2≠3
with z-candidates = n3r1c8 n3r7c2
z-chain[4]: c8n4{r7 r3} - c3n4{r3 r4} - b5n4{r4c6 r6c4} - r7n4{c4 .} ==> r8c9≠4
with z-candidates = n4r8c3 n4r7c8
singles ==> r8c9=6, r8c7=8, r3c8=8, r2c9=4, r7c8=4
whip[1]: b3n3{r1c9 .} ==> r1c1≠3, r1c4≠3, r1c6≠3
finned-x-wing-in-rows: n1{r7 r3}{c7 c4} ==> r1c4≠1
biv-chain[3]: r7n2{c7 c3} - r2c3{n2 n5} - c7n5{r2 r4} ==> r4c7≠2
finned-swordfish-in-columns: n2{c7 c3 c4}{r6 r7 r2} ==> r2c6≠2
biv-chain[4]: r8n7{c3 c1} - b7n1{r8c1 r9c1} - b9n1{r9c8 r7c7} - r3c7{n1 n7} ==> r3c3≠7
biv-chain[4]: c3n2{r2 r7} - r7c7{n2 n1} - r3c7{n1 n7} - r2c7{n7 n5} ==> r2c3≠5
singles ==> r2c3=2, r7c3=5, r7c2=3, r7c4=1, r7c7=2, r9c8=1, r9c2=4, r8c3=7, r8c1=1, r9c1=2, r9c6=8, r9c4=5, r2c4=8, r3c3=4, r4c3=3, r2c1=3, r2c6=7, r2c7=5, r5c6=6, r5c4=7, r4c9=5, r1c2=5
biv-chain[3]: r1n6{c1 c4} - c4n2{r1 r6} - r6n4{c4 c1} ==> r6c1≠6
biv-chain[3]: r6n6{c7 c2} - r3c2{n6 n7} - r3c7{n7 n1} ==> r6c7≠1
biv-chain[4]: b2n2{r1c6 r1c4} - r1n6{c4 c1} - r1n7{c1 c8} - r4c8{n7 n2} ==> r4c6≠2
stte
As usual with the simplest-first strategy, other solutions in Z4 can probably be found, with fewer steps.
There is no 1- or 2-step whip solution in W8.
I therefore tried the fewer step algorithm in W6 (my philosophy being that an increase in length by 2 wrt to the rating is the limit of the reasonable).
whip[6]: r7n2{c8 c3} - c3n5{r7 r2} - c7n5{r2 r4} - c7n2{r4 r6} - c7n6{r6 r8} - b9n8{r8c7 .} ==> r9c8≠2singles ==> r9c1=2, r2c3=2, r1c2=5, r9c2=4, r7c2=3, r7c3=5, r8c3=7, r8c1=1, r9c4=5
- Code: Select all
+-------------------+-------------------+-------------------+
! 367 5 8 ! 12367 4 12367 ! 9 137 13 !
! 347 1 2 ! 378 9 378 ! 578 6 345 !
! 9 67 34 ! 13678 5 13678 ! 178 13478 2 !
+-------------------+-------------------+-------------------+
! 3467 678 34 ! 9 18 24 ! 12567 1237 1356 !
! 5 2 1 ! 67 3 67 ! 4 9 8 !
! 3467 678 9 ! 24 18 5 ! 1267 1237 136 !
+-------------------+-------------------+-------------------+
! 8 3 5 ! 14 6 9 ! 12 124 7 !
! 1 9 7 ! 348 2 348 ! 68 5 46 !
! 2 4 6 ! 5 7 18 ! 3 18 9 !
+-------------------+-------------------+-------------------+
z-chain[4]: b9n4{r7c8 r8c9} - c6n4{r8 r4} - c3n4{r4 r3} - c8n4{r3 .} ==> r7c8≠2, r8c9≠4, r7c8≠1, r7c4≠4, r3c8≠4
with z-candidates = n4r7c8singles ==> r7c4=1, r7c7=2, r9c6=8, r9c8=1, r7c8=4, r8c9=6, r8c7=8, r3c8=8, r2c4=8, r2c9=4, r3c3=4, r4c3=3, r2c7=5, r4c9=5
whip[1]: r3n3{c6 .} ==> r1c4≠3, r1c6≠3, r2c6≠3
singles ==> r2c6=7, r2c1=3, r5c6=6, r5c4=7
- Code: Select all
+-------------+-------------+-------------+
! 67 5 8 ! 26 4 12 ! 9 37 13 !
! 3 1 2 ! 8 9 7 ! 5 6 4 !
! 9 67 4 ! 36 5 13 ! 17 8 2 !
+-------------+-------------+-------------+
! 467 678 3 ! 9 18 24 ! 167 27 5 !
! 5 2 1 ! 7 3 6 ! 4 9 8 !
! 467 678 9 ! 24 18 5 ! 167 237 13 !
+-------------+-------------+-------------+
! 8 3 5 ! 1 6 9 ! 2 4 7 !
! 1 9 7 ! 34 2 34 ! 8 5 6 !
! 2 4 6 ! 5 7 8 ! 3 1 9 !
+-------------+-------------+-------------+
biv-chain[4]: r1c4{n6 n2} - b5n2{r6c4 r4c6} - r4c8{n2 n7} - r1n7{c8 c1} ==> r1c1≠6stte
Very close to Defise's or Cenoman's solution.