Anyway, SE uses a total of four chains to solve the following puzzle, but it was generated with a single chain:
- Code: Select all
010002000
067000080
009603005
900080500
000100070
002004060
004009000
700050930
000000020
What is this mystery chain?
010002000
067000080
009603005
900080500
000100070
002004060
004009000
700050930
000000020
+-----------------------+
| . 1 . | . . 2 | . . . |
| . 6 7 | . . . | . 8 . |
| . . 9 | 6 . 3 | . . 5 |
|-------+-------+-------|
| 9 . . | . 8 . | 5 . . |
| . . . | 1 . . | . 7 . |
| . . 2 | . . 4 | . 6 . |
|-------+-------+-------|
| . . 4 | . . 9 | . . . |
| 7 . . | . 5 . | 9 3 . |
| . . . | . . . | . 2 . |
+-----------------------+
c4 Hidden Pair = 59 r26c4
c5b2 Locked Candidate 1 <> 4 r9c5
r2 b2 Locked Candidate 1 <> 5 r2c1
c5b2 Locked Candidate 1 <> 7 r679c5
c6b8 Naked Pair <> 18 r79c5
r5 b4 Locked Candidate 1 <> 8 r5c79
r7 b9 Locked Candidate 2 <> 1 r9c79
c28 X-Wing <> 4 r3c157,r4c9
<17+4> XY-Wing r3c5/r1c5+r3c8 <> 4 r1c9
r89c36 <18> UR Type 1.2224 <> 18 r9c3
<45+3> XYZ-Wing r1c1/r1c3+r5c1 <> 3 r2c1
r1 b1 Hidden Pair = 35 r1c13
r19c13 <35> UR Type 1.2224 <> 35 r9c1
r7 b7 Locked Candidate 1 <> 3 r7c45
+--------------------------------------------------------------+
| 5 1 3 | 8 4 2 | 6 9 7 |
| 24 6 7 | 9 1 5 | 234 8 234 |
| 28 48 9 | 6 7 3 | 12 14 5 |
|--------------------+--------------------+--------------------|
| 9 34 6 | 23 8 7 | 5 14 123 |
| 34 5 8 | 1 239 6 | 234 7 2349 |
| 1 7 2 | 5 39 4 | 38 6 389 |
|--------------------+--------------------+--------------------|
| 368 38 4 | 27 26 9 | 178 5 18 |
| 7 2 1 | 4 5 8 | 9 3 6 |
| 68 9 5 | 37 36 1 | 478 2 48 |
+--------------------------------------------------------------+
# 40 eliminations remain
4-SI S-Wing: (3)r5c1 = r4c2 - r4c4 = r9c4 - (3=6)r9c5 - r7c5 = (6)r7c1 => r7c1<>3
c9 Naked Pair <> 23 r56c9
BUG+1 = 8 r9c7