The puzzle falls fairly quickly to the Almost Locked Set analysis discussed recently in the
Solving Techniques section. The tricky stuff starts here:
- Code: Select all
. 1 . | . 3 4 | 2 5 9
4 . . | . 1 2 | . . .
. . 2 | . . 6 | 4 1 .
-------+-------+------
. . 1 | 3 . . | 5 . 4
. . 4 | . 5 1 | . . .
2 . . | . 4 7 | 3 . 1
-------+-------+------
1 9 . | 4 . . | 6 . 5
. 2 3 | 1 . 5 | . 4 8
5 4 . | . 7 . | 1 . .
678 1 67 | 78 3 4 | 2 5 9
4 357 59 | 579 1 2 | 78 3678 367
3789 3578 2 | 5789 89 6 | 4 1 37
-----------------+------------------+-----------------
789 678 1 | 3 2689 89 | 5 26789 4
3789 3678 4 | 2689 5 1 | 789 6789 267
2 568 59 | 689 4 7 | 3 689 1
-----------------+------------------+-----------------
1 9 78 | 4 28 38 | 6 237 5
67 2 3 | 1 69 5 | 79 4 8
5 4 68 | 2689 7 389 | 1 39 23
The cells {r9c6,r9c8,r9c9} form an Almost Locked Set, so when r9c9 doesn't contain a 2, r9c6 must contain an 8.
- Code: Select all
Consider the chain r7c5-2-r7c8-2-r9c9-<2|8>-r9c6.
When the cell r7c5 contains the value 8, so does the cell r9c6 - a contradiction.
Therefore, the cell r7c5 cannot contain the value 8.
- The move r7c5:=8 has been eliminated.
The value 2 is the only candidate for the cell r7c5.
The next tricky bit is the following:
- Code: Select all
. 1 . | . 3 4 | 2 5 9
4 . . | . 1 2 | . . .
. . 2 | . . 6 | 4 1 .
-------+-------+------
. . 1 | 3 . . | 5 2 4
. . 4 | 2 5 1 | . . .
2 . . | . 4 7 | 3 . 1
-------+-------+------
1 9 . | 4 2 . | 6 . 5
. 2 3 | 1 . 5 | . 4 8
5 4 . | . 7 . | 1 . 2
678 1 67 | 78 3 4 | 2 5 9
4 357 59 | 579 1 2 | 78 678 367
3789 3578 2 | 5789 89 6 | 4 1 37
-----------------+-----------------+----------------
79 678 1 | 3 689 89 | 5 2 4
389 368 4 | 2 5 1 | 789 6789 67
2 568 59 | 689 4 7 | 3 689 1
-----------------+-----------------+----------------
1 9 78 | 4 2 38 | 6 37 5
67 2 3 | 1 69 5 | 79 4 8
5 4 68 | 689 7 389 | 1 39 2
The Almost Locked Sets here are {r1c1,r4c1,r8c1} and (trivially) {r4c1,r4c6}. There's an extended link r4c6=8 => r7c6 and r9c6 <>8 => r9c4=8.
- Code: Select all
Consider the chain r1c4-8-r1c1-<8|9>-r4c1-<7|8>-r4c6=8=r9c4.
When the cell r1c4 contains the value 8, so does the cell r9c4 - a contradiction.
Therefore, the cell r1c4 cannot contain the value 8.
- The move r1c4:=8 has been eliminated.
The value 7 is the only candidate for the cell r1c4.
Easy from here ...