- Code: Select all
2...157.9
.........
5.9.2...4
7.......2
6.289.3.1
..1.6....
9..14.6..
.........
8.4.762.3
I did solve it, so post it in here instead of the "Help" section.
2...157.9
.........
5.9.2...4
7.......2
6.289.3.1
..1.6....
9..14.6..
.........
8.4.762.3
+-----------------------+
| 2 . . | . 1 5 | 7 . 9 |
| . . . | . . . | . . . |
| 5 . 9 | . 2 . | . . 4 |
|-------+-------+-------|
| 7 . . | . . . | . . 2 |
| 6 . 2 | 8 9 . | 3 . 1 |
| . . 1 | . 6 . | . . . |
|-------+-------+-------|
| 9 . . | 1 4 . | 6 . . |
| . . . | . . . | . . . |
| 8 . 4 | . 7 6 | 2 . 3 |
+-----------------------+
b9 Naked Triple <> 578 [r8c78],[r9c8]
r3 b3 Locked Candidate 1 <> 1 [r3c2]
c16 X-Wing f/s <> 4 [r6c4]
Franken Swordfish ... take your pick
3-Fish c35b9\r478 F 021\300 <> 5 [r4c24],[r7c2],[r8c24]
3-Fish r569\c24b6 F 300\021 <> 5 [r4c24],[r7c2],[r8c24]
*--------------------------------------------------------------------*
| 2 3468 368 | 346 1 5 | 7 38 9 |
| 134 13478 378 | 3479 38 34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
|----------------------+----------------------+----------------------|
| 7 3489 358 | 34 35 1 | 489 6 2 |
| 6 *45 2 | 8 9 47 | 3 457 1 |
|*34 34589 1 | 2357 6 2347 | 489 45789 578 |
|----------------------+----------------------+----------------------|
| 9 237 357 | 1 4 238 | 6 578 578 |
|*13 12367 3567 | 239 358 2389 | 149 149 578 |
| 8 *15 4 | 59 7 6 | 2 19 3 |
*--------------------------------------------------------------------*
XY-Chains using four (*) cells -- probably a continuous loop w/eliminations
r4c2 <> 4 XY-Chain on [r5c2]
r6c2 <> 4 XY-Chain on [r5c2]
r6c2 <> 5 XY-Chain on [r5c2]
r2c1 <> 3 XY-Chain on [r6c1]
r4c2 <> 4 XY-Chain on [r6c1]
r6c2 <> 4 XY-Chain on [r6c1]
r8c2 <> 1 XY-Chain on [r8c1]
r2c1 <> 3 XY-Chain on [r8c1]
r8c2 <> 1 XY-Chain on [r9c2]
r8c2 <> 1 XY-Chain on [r9c2]
r6c2 <> 5 XY-Chain on [r9c2]
r6c2 <> 5 XY-Chain on [r9c2]
Empty Rectangle
2-Fish c1b8\r68 fF 011\200 <> 3 [r6c6]
finned Franken Swordfish ... take your pick
3-Fish c16b4\r256 AF 021\300 <> 4 [r6c78]
3-Fish r14b4\c24b6 fF 201\021 <> 4 [r6c78]
+-----------------------------------------------------------------------+
| 2 3468 368 | 346 1 5 | 7 38 9 |
| 14 13478 378 | 3479 38 34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
|-----------------------+-----------------------+-----------------------|
| 7 389 358 | 34 35 1 | 489 6 2 |
| 6 45 2 | 8 9 47 | 3 457 1 |
| 34 389 1 | 2357 6 247 | 89 5789 578 |
|-----------------------+-----------------------+-----------------------|
| 9 237 357 | 1 4 238 | 6 578 578 |
| 13 2367 3567 | 239 358 2389 | 149 149 578 |
| 8 15 4 | 59 7 6 | 2 19 3 |
+-----------------------------------------------------------------------+
[r4c4]=3 [r4c5]=5 [r4c3]=8 [r4c2]=9 [r6c2]=3 [r6c1]=4 [r2c1]=1 [r8c1]=3 [r8c5]=8 ...
[r2c5]=3 [r2c3]=7 [r7c3]=5 [r8c3]=6 [r1c3]=3 [r1c8]=8 [r3c7]=1 [r4c7]=4 ...
[r8c7]=9 => ~[r9] & ~[b8] => [r4c3]<>3
+----------------------+----------------------+----------------------+
| 2 3468 368 | 346 1 5 | 7 38 9 |
| 134 13478 378 | 3479 38 34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
+----------------------+----------------------+----------------------+
| 7 34589 358 | 345 35 1 | 489 6 2 |
| 6 45 2 | 8 9 47 | 3 457 1 |
| 34 34589 1 | 23457 6 2347 | 489 45789 578 |
+----------------------+----------------------+----------------------+
| 9 2357 357 | 1 4 238 | 6 578 578 |
| 13 123567 3567 | 2359 358 2389 | 149 149 578 |
| 8 15 4 | 59 7 6 | 2 19 3 |
+----------------------+----------------------+----------------------+
+-------------------+-------------------+-------------------+
| 2 3468 368 | 346 1 5 | 7 38 9 |
| 14 13478 378 | 3479 38 34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
+-------------------+-------------------+-------------------+
| 7 389 358 | 345 35 1 | 489 6 2 |
| 6 45 2 | 8 9 47 | 3 457 1 |
| 34 389 1 | 23457 6 2347 | 489 45789 578 |
+-------------------+-------------------+-------------------+
| 9 237 357 | 1 4 238 | 6 578 578 |
| 13 2367 3567 | 2359 358 2389 | 149 149 578 |
| 8 15 4 | 59 7 6 | 2 19 3 |
+-------------------+-------------------+-------------------+
+----------------+----------------+----------------+
| 2 3468 368 | 46 1 5 | 7 38 9 |
| 1 478 78 | 479 3 4789 | 5 2 6 |
| 5 3678 9 | 67 2 78 | 18 138 4 |
+----------------+----------------+----------------+
| 7 389 38 | 34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 578 578 |
+----------------+----------------+----------------+
| 9 2 57 | 1 4 3 | 6 578 578 |
| 3 67 567 | 29 8 29 | 14 14 57 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+----------------+----------------+----------------+
Mage wrote:
- Code: Select all
+----------------+----------------+----------------+
| 2 3468 368 | 46 1 5 | 7 38 9 |
| 1 478 78 | 479 3 4789 | 5 2 6 |
| 5 3678 9 | 67 2 78 | 18 138 4 |
+----------------+----------------+----------------+
| 7 389 38 | 34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 578 578 |
+----------------+----------------+----------------+
| 9 2 57 | 1 4 3 | 6 578 578 |
| 3 67 567 | 29 8 29 | 14 14 57 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+----------------+----------------+----------------+
3) the last AIC : (8=7)r3c6 - (7=4)r5c6 - (4=3)r4c4 - (3)r4c2 = (3)r1c2 - (3=8)r1c8
I wrote:Great solution. I like it, but hopefully can change all those AICs into ALS-like moves later.
+-------------------------+-------------------------+-------------------------+
| 2 3468 368 | 346 1 5 | 7 38 9 |
|-134 13478 378 | 3479 38 34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
+-------------------------+-------------------------+-------------------------+
| 7 -34589 358 | 345 35 1 | 489 6 2 |
| 6 *45 2 | 8 9 47 | 3 457 1 |
|*34 -34589 1 | 23457 6 2347 | 489 45789 578 |
+-------------------------+-------------------------+-------------------------+
| 9 -2357 357 | 1 4 238 | 6 578 578 |
|*13 -123567 3567 | 2359 358 2389 | 149 149 578 |
| 8 *15 4 | 59 7 6 | 2 19 3 |
+-------------------------+-------------------------+-------------------------+
+----------------------+----------------------+----------------------+
| 2 3468 368 | 346 1 5 | 7 38 9 |
| 14 13478 378 | 3479 38 34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
+----------------------+----------------------+----------------------+
| 7 *389 *358 |#345 #35 1 | 489 6 2 |
| 6 45 2 | 8 9 47 | 3 457 1 |
|*34 *389 1 |-23457 6 -2347 | 489 45789 578 |
+----------------------+----------------------+----------------------+
| 9 237 357 | 1 4 238 | 6 578 578 |
| 13 2367 3567 | 2359 358 2389 | 149 149 578 |
| 8 15 4 | 59 7 6 | 2 19 3 |
+----------------------+----------------------+----------------------+
+----------------------+----------------------+----------------------+
| 2 *3468 368 |*346 1 5 | 7 38 9 |
| 14 13478 378 | 3479 38 *34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
+----------------------+----------------------+----------------------+
| 7 389 358 | 345 35 1 | 489 6 2 |
| 6 -45 2 | 8 9 *47 | 3 457 1 |
| 34 389 1 | 2357 6 237 | 489 45789 578 |
+----------------------+----------------------+----------------------+
| 9 237 357 | 1 4 238 | 6 578 578 |
| 13 2367 3567 | 2359 358 2389 | 149 149 578 |
| 8 15 4 | 59 7 6 | 2 19 3 |
+----------------------+----------------------+----------------------+
+-------------------+-------------------+-------------------+
| 2 *3468 -368 |*46 1 5 | 7 *38 9 |
| 1 #478 #78 | 479 3 4789 | 5 2 6 |
| 5 3678 9 | 67 2 78 | 18 138 4 |
+-------------------+-------------------+-------------------+
| 7 389 @38 |@34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 578 578 |
+-------------------+-------------------+-------------------+
| 9 2 57 | 1 4 3 | 6 578 578 |
| 3 67 567 | 29 8 29 | 14 14 57 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+-------------------+-------------------+-------------------+
+-------------------+-------------------+-------------------+
| 2 3468 *36 |*46 1 5 | 7 38 9 |
| 1 478 78 | 479 3 4789 | 5 2 6 |
| 5 3678 9 | 67 2 78 | 18 138 4 |
+-------------------+-------------------+-------------------+
| 7 389 -38 |*34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 578 578 |
+-------------------+-------------------+-------------------+
| 9 2 57 | 1 4 3 | 6 578 578 |
| 3 67 567 | 29 8 29 | 14 14 57 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+-------------------+-------------------+-------------------+
2 3468 368 | 346 1 5 | 7 38 9
134 13478 378 | 3479 38 34789 | 5 2 6
5 3678 9 | 367 2 378 | 18 138 4
----------------+----------------+--------------
7 3489 358 | 345 35 1 | 489 6 2
6 45 2 | 8 9 47 | 3 457 1
34 34589 1 | 2357 6 2347 | 489 45789 578
----------------+----------------+--------------
9 2357 357 | 1 4 238 | 6 578 578
13 123567 3567 | 2359 358 2389 | 149 149 578
8 15 4 | 59 7 6 | 2 19 3
[r4c3]~2~[r4c8]
[r8c4]=3 => [r8c4]<>2 => [r6c4]=2 => [r6c4]<>5 => [r9c4]=5
daj95376 wrote:Side Note: Would someone please remind me how you express the following implication chain in NL notation. That's what forced me to withdraw my post a couple of messages back.
- Code: Select all
[r8c4]=3 => [r8c4]<>2 => [r6c4]=2 => [r6c4]<>5 => [r9c4]=5
[r8c4]=2=[r6c4]=5=[r9c4]
+-------------------+-------------------+-------------------+
| 2 3468 *368 |@46 1 5 | 7 38 9 |
| 1 478 -78 | 479 3 4789 | 5 2 6 |
| 5 3678 9 | 67 2 78 | 18 138 4 |
+-------------------+-------------------+-------------------+
| 7 389 *38 |@34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 578 578 |
+-------------------+-------------------+-------------------+
| 9 2 57 | 1 4 3 | 6 578 578 |
| 3 67 567 | 29 8 29 | 14 14 57 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+-------------------+-------------------+-------------------+
Draco wrote:Chain 3: r1c8-3-r1c3=3=r4c3-3-r1c4 and r1c8=3=r3c8=1=r3c7-1-r8c7 ==> r4c7<>4
udosuk wrote:But even this little elimination involving 5 cells can't be described as an ALS-xz deduction.
hobiwan wrote:udosuk wrote:From this position:It's so simple that:
- Code: Select all
+-------------------+-------------------+-------------------+
| 2 3468 *368 |@46 1 5 | 7 38 9 |
| 1 478 -78 | 479 3 4789 | 5 2 6 |
| 5 3678 9 | 67 2 78 | 18 138 4 |
+-------------------+-------------------+-------------------+
| 7 389 *38 |@34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 578 578 |
+-------------------+-------------------+-------------------+
| 9 2 57 | 1 4 3 | 6 578 578 |
| 3 67 567 | 29 8 29 | 14 14 57 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+-------------------+-------------------+-------------------+
r2c3=8 => r14c3=[63] => r14c4=[44] => contradiciton
But even this little elimination involving 5 cells can't be described as an ALS-xz deduction.
I cant find a move for [r2c2]<>8 too, but if you really want to use ALS-XZ you can use the following:
Almost Locked Set XZ-Rule: A=[r2478c3] - {35678}, B=[r14c4] - {346}, X=3, Z=6 => [r1c3]<>6...
udosuk wrote:From this position:
- Code: Select all
+-------------------+-------------------+-------------------+
| 2 3468 *368 |@46 1 5 | 7 38 9 |
| 1 478 -78 | 479 3 4789 | 5 2 6 |
| 5 3678 9 | 67 2 78 | 18 138 4 |
+-------------------+-------------------+-------------------+
| 7 389 *38 |@34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 578 578 |
+-------------------+-------------------+-------------------+
| 9 2 57 | 1 4 3 | 6 578 578 |
| 3 67 567 | 29 8 29 | 14 14 57 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+-------------------+-------------------+-------------------+
[r1c3]=6 => [r4c3]=3 => [r14c4]=4 contradiction!
The complete walkthrough I wrote:Original puzzle:
- Code: Select all
+---+---+---+
|2..|.15|7.9|
|...|...|...|
|5.9|.2.|..4|
+---+---+---+
|7..|...|..2|
|6.2|89.|3.1|
|..1|.6.|...|
+---+---+---+
|9..|14.|6..|
|...|...|...|
|8.4|.76|2.3|
+---+---+---+
After basic moves (singles, subsets, locked candidates):
- Code: Select all
+------------------------+------------------------+------------------------+
| 2 3468 368 | 346 1 5 | 7 38 9 |
|-134 13478 378 | 3479 38 34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
+------------------------+------------------------+------------------------+
| 7 -34589 358 | 345 35 1 | 489 6 2 |
| 6 *45 2 | 8 9 47 | 3 457 1 |
|*34 -34589 1 | 23457 6 2347 | 489 45789 578 |
+------------------------+------------------------+------------------------+
| 9 -2357 357 | 1 4 238 | 6 578 578 |
|*13 -123567 3567 | 2359 358 2389 | 149 149 578 |
| 8 *15 4 | 59 7 6 | 2 19 3 |
+------------------------+------------------------+------------------------+
Quad ALS-xz (xy-ring)
ALS A: r68c1 = {134}
ALS B: r59c2 = {145}
restricted common: x = 4 (r5c2+r6c1)
common: z = 1 (r8c1+r9c2)
=> r8c2, seeing r8c1+r9c2, can't be 1
ALS A: r68c1 = {134}
ALS B: r59c2 = {145}
restricted common: x = 1 (r8c1+r9c2)
common: z = 4 (r5c2+r6c1)
=> r46c2, seeing r5c2+r6c1, can't be 4
ALS A: r5c2+r6c1 = {345}
ALS B: r8c1+r9c2 = {135}
restricted common: x = 3 (r68c1)
common: z = 5 (r59c2)
=> r4678c2, seeing r59c2, can't be 5
ALS A: r5c2+r6c1 = {345}
ALS B: r8c1+r9c2 = {135}
restricted common: x = 5 (r59c2)
common: z = 3 (r68c1)
=> r2c1, seeing r68c1, can't be 3
- Code: Select all
+----------------------+----------------------+----------------------+
| 2 3468 368 | 346 1 5 | 7 38 9 |
| 14 13478 378 | 3479 38 34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
+----------------------+----------------------+----------------------+
| 7 *389 *358 |#345 #35 1 | 489 6 2 |
| 6 45 2 | 8 9 47 | 3 457 1 |
|*34 *389 1 |-23457 6 -2347 | 489 45789 578 |
+----------------------+----------------------+----------------------+
| 9 237 357 | 1 4 238 | 6 578 578 |
| 13 2367 3567 | 2359 358 2389 | 149 149 578 |
| 8 15 4 | 59 7 6 | 2 19 3 |
+----------------------+----------------------+----------------------+
ALS-xz:
ALS A: r4c23+r6c12 = {34589}
ALS B: r4c45 = {345}
restricted common: x = 5 (r4c345)
common: z = 4 (r4c4+r6c1)
=> r6c46, seeing r4c4+r6c1, can't be 4
- Code: Select all
+----------------------+----------------------+----------------------+
| 2 *3468 368 |*346 1 5 | 7 38 9 |
| 14 13478 378 | 3479 38 *34789 | 5 2 6 |
| 5 3678 9 | 367 2 378 | 18 138 4 |
+----------------------+----------------------+----------------------+
| 7 389 358 | 345 35 1 | 489 6 2 |
| 6 -45 2 | 8 9 *47 | 3 457 1 |
| 34 389 1 | 2357 6 237 | 489 45789 578 |
+----------------------+----------------------+----------------------+
| 9 237 357 | 1 4 238 | 6 578 578 |
| 13 2367 3567 | 2359 358 2389 | 149 149 578 |
| 8 15 4 | 59 7 6 | 2 19 3 |
+----------------------+----------------------+----------------------+
Turbot fish on 4:
One of r1c24 must be 4, one of r25c6 must be 4
r1c4+r2c6 can't be both 4
=> One or both of r1c2+r5c6 must be 4
=> r5c2, seeing r1c2+r5c6, can't be 4
After singles:
- Code: Select all
+-------------------+-------------------+-------------------+
| 2 3468 -368 |*46 1 5 | 7 38 9 |
| 1 478 #78 | 479 3 4789 | 5 2 6 |
| 5 3678 9 | 67 2 78 | 18 138 4 |
+-------------------+-------------------+-------------------+
| 7 389 #38 |*34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 578 578 |
+-------------------+-------------------+-------------------+
| 9 2 #57 | 1 4 3 | 6 578 578 |
| 3 67 #567 | 29 8 29 | 14 14 57 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+-------------------+-------------------+-------------------+
ALS-xz:
ALS A: r14c4 = {346}
ALS B: r2478c3 = {35678}
restricted common: x = 3 (r4c34)
common: z = 6 (r1c4+r8c3)
=> r1c3, seeing r1c4+r8c3, can't be 6
After singles and naked pair r1c38={38} @ r1:
- Code: Select all
+----------------+----------------+----------------+
| 2 *46 *38 |#46 1 5 | 7 38 9 |
| 1 *48 7 | 49 3 489 | 5 2 6 |
| 5 368 9 | 67 2 78 | 18 138 4 |
+----------------+----------------+----------------+
| 7 389 -38 |#34 5 1 | 489 6 2 |
| 6 5 2 | 8 9 47 | 3 47 1 |
| 4 389 1 | 237 6 27 | 89 5 78 |
+----------------+----------------+----------------+
| 9 2 5 | 1 4 3 | 6 78 78 |
| 3 7 6 | 29 8 29 | 14 14 5 |
| 8 1 4 | 5 7 6 | 2 9 3 |
+----------------+----------------+----------------+
ALS-xz:
ALS A: r1c23+r2c2={3468}
ALS B: r14c4={346}
restricted common: x = 6 (r1c24)
common: z = 3 (r1c3+r4c4)
=> r4c3, seeing r1c3+r4c4, can't be 3
The rest are naked singles.
udosuk wrote:Draco wrote:Chain 3: r1c8-3-r1c3=3=r4c3-3-r1c4 and r1c8=3=r3c8=1=r3c7-1-r8c7 ==> r4c7<>4
Don't understand what you mean by this. Care to elaborate in plain logic?
2 3468 368 | 46 1 5 | 7 38 9
1 478 78 | 479 3 4789 | 5 2 6
5 3678 9 | 67 2 78 | 18 138 4
-----------+------------+------------
7 389 38 | 34 5 1 | 489 6 2
6 5 2 | 8 9 47 | 3 47 1
4 389 1 | 237 6 27 | 89 578 578
-----------+------------+------------
9 2 57 | 1 4 3 | 6 578 578
3 67 567 | 29 8 29 | 14 14 57
8 1 4 | 5 7 6 | 2 9 3
Draco wrote:The second chain:
r1c8=8 --> r3c8=3 --> r3c7=1 -->r8c7=4
This yields the second 4 intersecting with r4c7, so we can state that r4c7<>4 and the puzzle is reduced to singles.