A tough pattern ?

Everything about Sudoku that doesn't fit in one of the other sections

Postby ronk » Tue May 23, 2006 4:12 pm

Havard wrote:With your point being that...?:)
While my point should be obvious, you may deduce another.:) But since we're discussing points, what is the point of quoting an entire post?
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby Ruud » Tue May 23, 2006 6:00 pm

Mike Barker wrote:Could you provide a link to what you mean by "tabling"? It seems that #2 cracks with nothing more than an ALS-xy rule and a finned X-wing:
    Hidden Single: r3c9 => r3c9=6,r3c156<>6
    Hidden Single: r5c9 => r5c9=2,r4c8<>2,r5c46<>2
    Locked Column: r45c1 => r7c1<>1
    Locked Column: r45c3 => r2c3<>7
    Locked Column: r89c3 => r2c3<>4
    Locked Column: r89c3 => r2c3<>6
    Locked Column: r12c7 => r8c7<>1
    Locked Column: r56c7 => r8c7<>8
    Locked Column Box: r2345c7|r234c8 => r8c7<>7,r78c8<>7
    Hidden Column Pair: r89c3 => r8c3=46,r9c3=46
    Naked Row Triple: r9c349 => r9c2<>1,r9c6<>16
    ALS xy-rule with B=1 cells: r4c378-4-r6c9-5-r8c79|r79c9 => r56c7<>3
    Locked Row: r4c78 => r4c156<>3
    Naked Single: r4c1 => r4c56<>1,r5c1<>1
    Row X-Wing Fillet-o-Fish: r5c16|r9c26 => r7c1<>3
    The Solution is completed with singles
If this right, how does tabling fit into the solution?


I have not yet implemented ALS in my solver. It's on the top of my wishlist, though...

Tabling is my implementation of "Trebor's Tables" developed by Robert Woodhead (Mad Overlord), Nick70 & Doug Bowman. Here is a link to the thread in the programmers forum: http://www.setbb.com/sudoku/viewtopic.php?t=126 I also added this link to my solving technique index.

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby Ocean » Tue May 23, 2006 10:43 pm

ravel wrote:Ocean, i have scanned now the whole list with this 20 clue pattern. Nearly all are rather tough, numbers 40, 75 and 126 needed 4 steps.
Thanks! Interesting stats. Still curious about which logical methods that crack the puzzles...
(I also have another 2000 puzzles with the same pattern that do not 'solve', but where the solver has some progress. Also 600 puzzles that solve with basic methods, plus 150 extra that solve with xy-chains).

Ruud wrote:Here are the first 10 in my top50000 a.k.a. "Trials and Tabulations"
I run Ruud's top50000 through my logical solver - which contains most but not all basic methods (does not catch swordfish or coloring), in addition to xy-chain. Result is:

Code: Select all
Unsolved puzzles:               42897
Solved with basic methods only:    73 puzzles  (First 3: #847, #881, #938)
Basics + one xy-wing:               8 puzzles  (First 3: #10791, #19373, #28277)
Solves with 1 xy-chain:          1573 puzzles  (First: #102)
Solves with 2 xy-chains/wings:   1463 puzzles
Solves with 3 xy-chains/wings:   1238 puzzles
Solves with 4 xy-chains/wings:   1003 puzzles
Solves with >4 xy-chains/wings:  1745 puzzles
(Total solved puzzles: 7103)

Tried to find a common factor for the 73 puzzles that solve with basics only. Most of them solve with either hidden pairs or triples, (70 puzzles, one of them needed x-wing also). Two of the three left were solved with an x-wing, while one puzzle (#19425) solved with naked pairs + locked candidates only.
Ocean
 
Posts: 442
Joined: 29 August 2005

Postby Havard » Wed May 24, 2006 6:02 pm

ronk wrote:While my point should be obvious, you may deduce another.:) But since we're discussing points, what is the point of quoting an entire post?


I'm sure that I am just a bit slow, but sometimes I can't understand you ronk...:) I did not understand what your point about the ALS was? Could you explain to a slow norwegian?:)

Havard
Havard
 
Posts: 378
Joined: 25 December 2005

Postby ronk » Wed May 24, 2006 6:22 pm

Havard wrote:I did not understand what your point about the ALS was ...

Only that I think it's too soon to remove puzzles that require ALS ... at least those that require the ALS xy-rule ... from lists of difficult puzzles.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby tarek » Wed May 24, 2006 6:35 pm

I agree that some ALS-requiring puzzles are tougher (I have some 15 node examples) than many implication chains....

tarek
User avatar
tarek
 
Posts: 3762
Joined: 05 January 2006

Postby ravel » Wed May 24, 2006 6:46 pm

After making some changes in my program, both Oceans and Ruuds puzzles, also RW's and Emily's friend's only need 3 steps, Ruuds 10th only 2 steps (r1c1<>4, r4c9<>3).
But it is too slow now for the hardest puzzles or longer lists of puzzles:(
ravel
 
Posts: 998
Joined: 21 February 2006

Postby gsf » Wed May 24, 2006 8:20 pm

here are some results from my solver on ocean's and ruud's collections
Code: Select all
notes on oceans's full symmetry minimal 20 clue 10117

8m45s to check ~19 sec/Ghz

 6017 solved using basic constraints { naked/hidden n-tuples, order n x-wing }
  257 solved with x-cycles
 1101 solved with y-cycles
  917 solved with x-cycles + y-cycles
 ----
 8292 solved with basic constraints + { x-cycles y-cycles }

17 required some fairly long x-cycles and y-cycles
where the solver was set to use the shortest cycle at each step

longest  x-cycle 9 edges        # 2040
        [54]-[51][31][33][73][79][98]-[16][24]-
longest  y-cycle 18 edges       # 8393
        [75]7[95]1[93]7[23]9[27]6[57]2[53]6[41]2[31]6[32]2[52]8
        [51]9[42]7[49]9[79]2[72]9[71]7[75]7
longest xy-cycle 23 edges       # 2040

1825 required guessing
62 that required guessing had 1 basic constraint backdoor
average 16 basic constraint backdoors for puzzles requiring guessing
all puzzles requiring guessing had singleton basic constraint backdoors

Code: Select all
notes on ruud's top50000

48 min to check ~17 sec/Ghz

all symmetries represented but horizontal and horizontal+vertical

75 solved using basic constraints
{ naked/hidden n-tuples, order n x-wing }:
847   1891  5358  7890  11541 15193 17537 20494 24604 32014 35112
881   2149  6402  8813  11890 15296 17780 20652 25661 32264 35436
938   2405  6575  8876  12355 15350 17954 22074 27791 32852 36149
991   3168  6776  9241  12853 15590 18830 22571 28830 33150 36957
1045  3275  6940  9378  13297 16245 18903 22755 31024 33525 37752
1085  4021  7061  10568 14270 17325 19425 23524 31213 34735
1220  5278  7291  10979 15113 17506 20346 24472 31290 35042

   34 solved with x-cycles
 9261 solved with y-cycles
17353 solved with x-cycles + y-cycles
-----
26723 solved with basic constraints + { x-cycles y-cycles }

219 required some fairly long x-cycles and y-cycles
where the solver was set to use the shortest cycle at each step
5 sec/puzzle/Ghz for these puzzles

longest  x-cycle 11 edges       # 18914
        [53]-[93][95]-[25][24]-[51][71][78][68]-[47][43]-
longest  y-cycle 23 edges       #  5695
        [28]1[38]6[34]1[54]4[56]3[36]4[16]8[17]7[15]2[65]7[64]5[46]2
        [41]5[61]3[69]8[29]4[79]9[89]3[82]9[72]8[32]7[23]8[28]6
longest xy-cycle 29 edges       # 11393

23277 required guessing
86 that required guessing had 1 basic constraint backdoor
average 17 basic constraint backdoors for puzzles requiring guessing
all puzzles requiring guessing had singleton basic constraint backdoors

I'll post results on gfroyle's 22M 18's when they finish (~2 days crunching)
gsf
2014 Supporter
 
Posts: 7306
Joined: 21 September 2005
Location: NJ USA

Postby RW » Wed May 24, 2006 9:04 pm

ravel wrote:After making some changes in my program, both Oceans and Ruuds puzzles, also RW's and Emily's friend's only need 3 steps, Ruuds 10th only 2 steps (r1c1<>4, r4c9<>3).


Interesting, was it a change that introduced a new technique, or did you just optimize the search for short solutions? I'd also be interested to know how your program handles scrambled versions of the same puzzle. If it could find the shortest path to a "simple" solution, then the scrambling wouldn't affect the outcome. What's the verdict for these 5 different versions of gfroyle's beauty?

Code: Select all
9....8.....12...5..6..7..........8....41...6.........9.7..9....8....3.....25...1.
....2..9...8..71.....4....5....6..2...1..87.....9....44..........6..38...9.......
...2......5...3.7.....4....3.....1....4.....2.7...9.8..8...7.9...2.....61.....4..
8....64...5.1.......9.7....6....43..........7.......5...3.9.....7.5.....4....82..
........4..2.6.5.........3..4.9.......6.1.2..7....3.....1.2.8...9.5.....3....4...

Original puzzle:
6.......3.7..8..9...2...5.....3......8..1..7......2.....5...1...9..4..8.3.......2


Sudocue solves these with 9, 10, 15, 21 and 26 tabling steps (21 steps for the original puzzle).

[Edit: and here's one more version of the same puzzle that requires 36 tabling steps:
Code: Select all
.....5....6.9....2....1.....4.8....6..7....9.5.....1...2.6....43.....5....1....7.
]

RW
RW
2010 Supporter
 
Posts: 1010
Joined: 16 March 2006

Postby Ruud » Wed May 24, 2006 10:02 pm

I see that the top50000 needs a few replacements. I am rerating my collection now. As soon as it is finished, the list will be updated.

Thanks for your test results.

Ruud.
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby ravel » Thu May 25, 2006 5:19 pm

RW wrote:Interesting, was it a change that introduced a new technique, or did you just optimize the search for short solutions? I'd also be interested to know how your program handles scrambled versions of the same puzzle.

No, no new technique, i dont have much time to improve the program.
It is a simple and time consuming algorithm. When it gets stuck with the few basic techniques, it goes through the remaining candidates, sets it to the cell and looks, if a contradiction arises with the same techniques (or it gets stuck again). From those, which can be eliminated, i greedily choose the (first) one, that proceeds the puzzle most, i.e. after eliminating it, the largest number of other candidates can be eliminated too.
In the current version i try this starting from each of the candidates, that can be eliminated after getting stuck the first time, but it would take me hours to check one of the hardest puzzles this way and it is completely impossible to try all orders of feasible eliminations.
Scrumbling the puzzle will change the result, because often there are more than one candidates, that lead to the same progress of eliminations. In the older version i also tried it starting with the last cell and got an improvement from 12 to 10 steps for one puzzle.
BTW, it seems that i read the trace wrong yesterday, yours and one of Ocean are still in the 4-step list.
ravel
 
Posts: 998
Joined: 21 February 2006

Re:

Postby denis_berthier » Mon Mar 01, 2021 9:35 am

I fell upon this old collection of fishes and I wondered what modern techniques would give.

Ruud wrote:#9 is the toughest. 33 tabling steps for SudoCue.
Ruud.


This puzzle is rated SER 8.5, which is hard but far from hardest by modern standards. As expected, it solves with chains, though a large number of them. Although whips are activated in the solution below, their full power is never needed: the z- and t- candidates appear only in different patterns (z-chains and t-whips)


SudoRules solution: Show
(solve "000010002002000030040005600000002100500000007003400000006300080010000400900070000")
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+SFin
*** Using CLIPS 6.32-r779
*** Download from: https://github.com/denis-berthier/CSP-Rules-V2.1
***********************************************************************************************
Code: Select all
Starting non trivial part of solution with the following RESOLUTION STATE:
   3678      356789    5789      6789      1         346789    5789      4579      2         
   1678      56789     2         6789      4689      46789     5789      3         14589     
   1378      4         1789      2789      2389      5         6         179       189       
   4678      6789      4789      56789     35689     2         1         4569      345689   
   5         2689      1489      1689      3689      13689     2389      2469      7         
   12678     26789     3         4         5689      16789     2589      2569      5689     
   247       257       6         3         2459      149       2579      8         159       
   2378      1         578       25689     25689     689       4         25679     3569     
   9         2358      458       12568     7         1468      235       1256      1356     
253 candidates, 1817 csp-links and 1817 links. Density = 5.7%

swordfish-in-columns: n3{c2 c6 c7}{r9 r1 r5} ==> r9c9 ≠ 3, r5c5 ≠ 3, r1c1 ≠ 3
swordfish-in-columns: n4{c1 c5 c9}{r4 r7 r2} ==> r7c6 ≠ 4, r4c8 ≠ 4, r4c3 ≠ 4, r2c6 ≠ 4
swordfish-in-columns: n1{c3 c4 c8}{r3 r5 r9} ==> r9c9 ≠ 1, r9c6 ≠ 1, r5c6 ≠ 1, r3c9 ≠ 1, r3c1 ≠ 1
biv-chain[4]: r1n4{c6 c8} - c9n4{r2 r4} - b6n3{r4c9 r5c7} - c6n3{r5 r1} ==> r1c6 ≠ 6, r1c6 ≠ 7, r1c6 ≠ 8, r1c6 ≠ 9
biv-chain[4]: r2n1{c9 c1} - b4n1{r6c1 r5c3} - b4n4{r5c3 r4c1} - c9n4{r4 r2} ==> r2c9 ≠ 5, r2c9 ≠ 8, r2c9 ≠ 9
biv-chain[4]: r4n3{c9 c5} - b2n3{r3c5 r1c6} - b2n4{r1c6 r2c5} - c9n4{r2 r4} ==> r4c9 ≠ 5, r4c9 ≠ 6, r4c9 ≠ 8, r4c9 ≠ 9
biv-chain[4]: r5n4{c3 c8} - b3n4{r1c8 r2c9} - b3n1{r2c9 r3c8} - c3n1{r3 r5} ==> r5c3 ≠ 8, r5c3 ≠ 9
z-chain[4]: c7n3{r9 r5} - r4c9{n3 n4} - c8n4{r5 r1} - b3n5{r1c8 .} ==> r9c7 ≠ 5
biv-chain[4]: r9c7{n2 n3} - b7n3{r9c2 r8c1} - r3n3{c1 c5} - b2n2{r3c5 r3c4} ==> r9c4 ≠ 2
z-chain[5]: b8n2{r8c5 r7c5} - r7n4{c5 c1} - r4n4{c1 c9} - b6n3{r4c9 r5c7} - r9c7{n3 .} ==> r8c8 ≠ 2
t-whip[4]: c1n2{r8 r6} - b4n1{r6c1 r5c3} - r5n4{c3 c8} - c8n2{r5 .} ==> r9c2 ≠ 2
whip[1]: r9n2{c8 .} ==> r7c7 ≠ 2
biv-chain[5]: b9n2{r9c8 r9c7} - c7n3{r9 r5} - r4c9{n3 n4} - r2c9{n4 n1} - b9n1{r7c9 r9c8} ==> r9c8 ≠ 5, r9c8 ≠ 6
z-chain[5]: c6n1{r6 r7} - r9n1{c4 c8} - b9n2{r9c8 r9c7} - c7n3{r9 r5} - b6n8{r5c7 .} ==> r6c6 ≠ 8
t-whip[5]: r7n4{c5 c1} - c3n4{r9 r5} - b4n1{r5c3 r6c1} - c1n2{r6 r8} - r7n2{c2 .} ==> r7c5 ≠ 9, r7c5 ≠ 5
biv-chain[3]: r7c5{n2 n4} - c6n4{r9 r1} - b2n3{r1c6 r3c5} ==> r3c5 ≠ 2
hidden-single-in-a-block ==> r3c4 = 2
z-chain[4]: b8n5{r8c5 r9c4} - r9n1{c4 c8} - r9n2{c8 c7} - b9n3{r9c7 .} ==> r8c9 ≠ 5
biv-chain[5]: r8n3{c1 c9} - r4c9{n3 n4} - r2n4{c9 c5} - r7c5{n4 n2} - r8n2{c5 c1} ==> r8c1 ≠ 7, r8c1 ≠ 8
finned-x-wing-in-rows: n7{r8 r3}{c8 c3} ==> r1c3 ≠ 7
z-chain[4]: c3n1{r3 r5} - b4n4{r5c3 r4c1} - c1n8{r4 r6} - c9n8{r6 .} ==> r3c3 ≠ 8
z-chain[5]: b3n5{r2c7 r1c8} - b3n4{r1c8 r2c9} - c9n1{r2 r7} - r7n5{c9 c2} - r2n5{c2 .} ==> r6c7 ≠ 5
z-chain[5]: r9n3{c2 c7} - r9n2{c7 c8} - b9n1{r9c8 r7c9} - r7n5{c9 c7} - r2n5{c7 .} ==> r9c2 ≠ 5
biv-chain[3]: r9c2{n8 n3} - r1n3{c2 c6} - c6n4{r1 r9} ==> r9c6 ≠ 8
z-chain[3]: r9c2{n8 n3} - c7n3{r9 r5} - b6n8{r5c7 .} ==> r6c2 ≠ 8
z-chain[4]: b3n5{r2c7 r1c8} - r1n4{c8 c6} - r9c6{n4 n6} - r9c9{n6 .} ==> r7c7 ≠ 5
whip[1]: c7n5{r2 .} ==> r1c8 ≠ 5
biv-chain[4]: r7n5{c2 c9} - c9n1{r7 r2} - r2n4{c9 c5} - r7c5{n4 n2} ==> r7c2 ≠ 2
whip[1]: b7n2{r8c1 .} ==> r6c1 ≠ 2
hidden-pairs-in-a-row: r7{n2 n4}{c1 c5} ==> r7c1 ≠ 7
biv-chain[3]: r2n5{c7 c2} - r7c2{n5 n7} - r7c7{n7 n9} ==> r2c7 ≠ 9
biv-chain[4]: b7n7{r8c3 r7c2} - r7n5{c2 c9} - c9n1{r7 r2} - b1n1{r2c1 r3c3} ==> r3c3 ≠ 7
biv-chain[3]: r3n7{c1 c8} - r3n1{c8 c3} - b4n1{r5c3 r6c1} ==> r6c1 ≠ 7
biv-chain[4]: r9c2{n8 n3} - c1n3{r8 r3} - r3n7{c1 c8} - r8n7{c8 c3} ==> r8c3 ≠ 8
whip[1]: r8n8{c6 .} ==> r9c4 ≠ 8
naked-pairs-in-a-block: b7{r7c2 r8c3}{n5 n7} ==> r9c3 ≠ 5
biv-chain[4]: b7n5{r7c2 r8c3} - r8n7{c3 c8} - r3n7{c8 c1} - b1n3{r3c1 r1c2} ==> r1c2 ≠ 5
biv-chain[3]: r1n5{c7 c3} - r8c3{n5 n7} - b9n7{r8c8 r7c7} ==> r1c7 ≠ 7
biv-chain[3]: c7n7{r2 r7} - r7c2{n7 n5} - r2n5{c2 c7} ==> r2c7 ≠ 8
biv-chain[5]: r3n7{c1 c8} - c8n1{r3 r9} - r9n2{c8 c7} - r9n3{c7 c2} - b1n3{r1c2 r3c1} ==> r3c1 ≠ 8
biv-chain[5]: r9n2{c7 c8} - b9n1{r9c8 r7c9} - c6n1{r7 r6} - r6n7{c6 c2} - c2n2{r6 r5} ==> r5c7 ≠ 2
whip[4]: r4n3{c5 c9} - b6n4{r4c9 r5c8} - r5n2{c8 c2} - r5n6{c2 .} ==> r4c5 ≠ 6
biv-chain[5]: r3n7{c8 c1} - r3n3{c1 c5} - r4n3{c5 c9} - c9n4{r4 r2} - b3n1{r2c9 r3c8} ==> r3c8 ≠ 9
z-chain[3]: b3n9{r1c8 r3c9} - b3n8{r3c9 r1c7} - r1n5{c7 .} ==> r1c3 ≠ 9
biv-chain[4]: c3n9{r4 r3} - b1n1{r3c3 r2c1} - r6n1{c1 c6} - r6n7{c6 c2} ==> r6c2 ≠ 9, r4c3 ≠ 7
singles ==> r8c3 = 7, r7c2 = 5, r1c3 = 5, r2c7 = 5, r7c7 = 7
naked-pairs-in-a-block: b3{r1c7 r3c9}{n8 n9} ==> r1c8 ≠ 9
biv-chain[3]: c3n8{r4 r9} - c3n4{r9 r5} - b4n1{r5c3 r6c1} ==> r6c1 ≠ 8
biv-chain[3]: r7c9{n9 n1} - c8n1{r9 r3} - r3c3{n1 n9} ==> r3c9 ≠ 9
singles ==> r3c9 = 8, r1c7 = 9
biv-chain[3]: b1n9{r2c2 r3c3} - r4c3{n9 n8} - b7n8{r9c3 r9c2} ==> r2c2 ≠ 8
biv-chain[3]: b1n9{r2c2 r3c3} - r3n1{c3 c8} - r3n7{c8 c1} ==> r2c2 ≠ 7
biv-chain[3]: b5n3{r4c5 r5c6} - r5c7{n3 n8} - r6n8{c7 c5} ==> r4c5 ≠ 8
biv-chain[3]: r3c5{n9 n3} - c1n3{r3 r8} - r8n2{c1 c5} ==> r8c5 ≠ 9
biv-chain[4]: r4c3{n9 n8} - r9c3{n8 n4} - r5n4{c3 c8} - r5n2{c8 c2} ==> r5c2 ≠ 9
whip[1]: b4n9{r4c3 .} ==> r4c4 ≠ 9, r4c5 ≠ 9, r4c8 ≠ 9
biv-chain[4]: r2n4{c5 c9} - r4c9{n4 n3} - r5c7{n3 n8} - r6n8{c7 c5} ==> r2c5 ≠ 8
z-chain[3]: b2n8{r2c4 r2c6} - c6n7{r2 r6} - b5n1{r6c6 .} ==> r5c4 ≠ 8
biv-chain[4]: b2n4{r2c5 r1c6} - b2n3{r1c6 r3c5} - r3n9{c5 c3} - r2c2{n9 n6} ==> r2c5 ≠ 6
naked-triplets-in-a-block: b2{r1c6 r2c5 r3c5}{n3 n4 n9} ==> r2c6 ≠ 9, r2c4 ≠ 9
whip[1]: b2n9{r3c5 .} ==> r5c5 ≠ 9, r6c5 ≠ 9
biv-chain[3]: c4n9{r5 r8} - r7c6{n9 n1} - b5n1{r6c6 r5c4} ==> r5c4 ≠ 6
biv-chain[3]: c4n9{r8 r5} - c4n1{r5 r9} - r7c6{n1 n9} ==> r8c6 ≠ 9
biv-chain[4]: c4n9{r8 r5} - r5n1{c4 c3} - c3n4{r5 r9} - r9c6{n4 n6} ==> r8c4 ≠ 6
z-chain[4]: b2n6{r2c4 r2c6} - r9n6{c6 c9} - b9n5{r9c9 r8c8} - r4c8{n5 .} ==> r4c4 ≠ 6
z-chain[4]: r9n6{c6 c9} - c9n5{r9 r6} - r6c5{n5 n8} - r5c5{n8 .} ==> r8c5 ≠ 6
whip[1]: c5n6{r6 .} ==> r5c6 ≠ 6, r6c6 ≠ 6
t-whip[3]: r4c8{n6 n5} - r6n5{c9 c5} - b5n6{r6c5 .} ==> r5c8 ≠ 6
z-chain[4]: c4n9{r8 r5} - b5n1{r5c4 r6c6} - c6n7{r6 r2} - b2n8{r2c6 .} ==> r8c4 ≠ 8
z-chain[4]: r8c4{n5 n9} - r8c8{n9 n6} - r4c8{n6 n5} - c4n5{r4 .} ==> r8c5 ≠ 5
whip[1]: b8n5{r9c4 .} ==> r4c4 ≠ 5
naked-triplets-in-a-column: c4{r1 r2 r4}{n7 n6 n8} ==> r9c4 ≠ 6
whip[1]: b8n6{r9c6 .} ==> r2c6 ≠ 6
biv-chain[4]: c2n2{r5 r6} - r6n7{c2 c6} - r4c4{n7 n8} - r5c5{n8 n6} ==> r5c2 ≠ 6
hidden-single-in-a-row ==> r5c5 = 6
biv-chain[4]: r4c8{n6 n5} - b5n5{r4c5 r6c5} - c5n8{r6 r8} - r8c6{n8 n6} ==> r8c8 ≠ 6
whip[1]: b9n6{r9c9 .} ==> r6c9 ≠ 6
naked-pairs-in-a-row: r8{c4 c8}{n5 n9} ==> r8c9 ≠ 9
biv-chain-cn[4]: c5n5{r4 r6} - c9n5{r6 r9} - c9n6{r9 r8} - c9n3{r8 r4} ==> r4c5 ≠ 3
stte
denis_berthier
2010 Supporter
 
Posts: 4275
Joined: 19 June 2007
Location: Paris

Re: Re:

Postby m_b_metcalf » Mon Mar 01, 2021 10:07 am

denis_berthier wrote:I fell upon this old collection of fishes and I wondered what modern techniques would give.

Here's a selection of ratings from SE (although it's not quite 'modern'). All 411 start with a swordfish.
Code: Select all
3.8/3.8/3.8  254     

7.1/7.1/3.8   95               
7.2/7.2/3.8   37               
7.3/7.3/3.8  259               
7.8/7.2/3.8  215               
           
8.3/8.3/3.8  229                         
8.4/8.4/3.8  194               
8.5/8.5/3.8  241                     
8.8/8.5/3.8    7               
8.9/8.9/3.8  273               

9.0/9.0/3.8  329               
9.1/9.1/3.8   64               
9.2/8.3/3.8  110           


The hardest in ruud's top ten is
Code: Select all
9.2/1.2/1.2   7 
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13639
Joined: 15 May 2006
Location: Berlin

Re: A tough pattern ?

Postby urhegyi » Mon Mar 01, 2021 11:59 am

I have rated them all:
Hidden Text: Show
Code: Select all
000010002001000030040005600000006700300000005008400000007800040050000900200030000 ED=7.2/7.2/3.8
000010002001000030040005600000006700800000005003400000009300080020000400500090000 ED=7.2/7.2/3.8
000010002001000030040005600000007400300000006008900000006300080050000100200040000 ED=8.3/7.2/3.8
000010002001000030040005600000007400300000006008900000006300080050000900200040000 ED=8.4/7.2/3.8
000010002001000030040005600000007400800000005003600000006900070050000800200030000 ED=7.2/7.2/3.8
000010002001000030040005600000007800100000005003400000006300090050000400200080000 ED=7.3/7.2/3.8
000010002001000030040005600000007800100000005003400000006300090050000400900020000 ED=8.8/8.5/3.8
000010002002000030040005600000001500300000004007600000008300070050000800900040000 ED=7.3/3.8/3.8
000010002002000030040005600000002100500000007003400000006300080010000400900070000 ED=8.5/8.5/3.8
000010002002000030040005600000002400100000007003800000008600090050000100700030000 ED=7.2/7.2/3.8
000010002002000030040005600000002500100000007003800000008900060050000100700030000 ED=7.2/7.2/3.8
000010002002000030040005600000002700300000004008600000006300080070000500100040000 ED=7.2/7.2/3.8
000010002002000030040005600000002700300000004008600000006300080070000900100040000 ED=7.2/7.2/3.8
000010002002000030040005600000004500100000007003600000006800090090000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000004500100000007003800000006900040020000900800030000 ED=8.9/7.3/3.8
000010002002000030040005600000004700100000008003900000009600070050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000006100200000007003800000007300040010000500900060000 ED=8.5/3.8/3.8
000010002002000030040005600000006100600000005003400000007300080010000400200070000 ED=8.3/8.3/3.8
000010002002000030040005600000006100700000005003400000006800090010000400200030000 ED=8.3/8.3/3.8
000010002002000030040005600000006100700000005003400000008300090050000400200080000 ED=8.3/8.3/3.8
000010002002000030040005600000006100700000008003400000008300070010000400200050000 ED=7.3/7.3/3.8
000010002002000030040005600000006400100000005003700000006300010050000700200080000 ED=7.2/7.2/3.8
000010002002000030040005600000006400100000005003700000006400080050000700200080000 ED=8.4/7.2/3.8
000010002002000030040005600000006400100000005007300000003400010050000800200090000 ED=7.2/7.2/3.8
000010002002000030040005600000006500100000007003700000006400080050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000006500100000007003700000007400080050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000006500100000007003700000007400080060000100200030000 ED=8.3/7.2/3.8
000010002002000030040005600000006500100000007003800000006700040090000100200030000 ED=8.3/7.2/3.8
000010002002000030040005600000006500100000007003800000008400090050000100700030000 ED=7.2/7.2/3.8
000010002002000030040005600000006500100000007003800000008500040050000100700030000 ED=7.2/7.2/3.8
000010002002000030040005600000006500100000007003800000008900040050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000006500100000007003800000008900040050000100700030000 ED=7.2/7.2/3.8
000010002002000030040005600000006500300000004007800000006300080050000200100040000 ED=7.2/7.2/3.8
000010002002000030040005600000006500300000004007800000009300080050000200100040000 ED=7.2/7.2/3.8
000010002002000030040005600000006700100000005008400000009800040050000900200030000 ED=7.3/7.2/3.8
000010002002000030040005600000006700100000008003900000009400070050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000006700100000008003900000009700040050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007100300000004008600000006300090050000800100040000 ED=7.2/7.2/3.8
000010002002000030040005600000007100300000004008900000009300080050000200100040000 ED=7.2/7.2/3.8
000010002002000030040005600000007200300000004007600000006300080050000900100040000 ED=8.8/7.2/3.8
000010002002000030040005600000007400100000005003600000006400080090000100500030000 ED=7.1/7.1/3.8
000010002002000030040005600000007400100000008003900000009600020050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000004003600000006700080050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000006003600000006800090050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000007003600000006800040090000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003600000006400070050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003600000006500040050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003600000006700090050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003600000006900040050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003600000006900040050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003600000006900040090000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003800000005600040060000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003800000006400070050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003800000006400070050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003800000008400070050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003800000009400060050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003800000009600040050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003900000004600070050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003900000006500040070000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003900000006700040050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003900000009400060050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003900000009400070050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003900000009500040050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003900000009600040020000700800030000 ED=9.1/9.1/3.8
000010002002000030040005600000007500100000008003900000009600040050000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500100000008003900000009600040060000100800030000 ED=7.2/7.2/3.8
000010002002000030040005600000007500300000004006800000008300070050000900100040000 ED=7.2/7.2/3.8
000010002002000030040005600000007500300000004006800000009300070050000800100040000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000005003600000006800070080000100500030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000005003600000006900070080000100500030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000005003600000006900070080000900500030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000005003600000006900080080000900500030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000005003900000006800040080000100500030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000006003600000008700040050000100200030000 ED=7.3/7.2/3.8
000010002002000030040005600000007800100000009003600000005700040080000100200030000 ED=7.3/7.2/3.8
000010002002000030040005600000007800100000009003600000006500040070000100900030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000009003600000006700040050000100200030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000009003600000006700040050000100900030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000009003600000006800040050000100900030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000009003600000006800040080000100900030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800100000009003600000007800040050000100900030000 ED=7.2/7.2/3.8
000010002002000030040005600000007800300000004009600000006300090080000700100040000 ED=7.2/7.2/3.8
000010002002000030040005600000007800300000004009800000006300080050000200100040000 ED=7.2/7.2/3.8
000010002002000030040005600000007800500000001003900000009600040080000500100030000 ED=7.2/7.2/3.8
000010002003000010040005600000003500200000007008900000009200030050000100600080000 ED=7.2/7.2/3.8
000010002003000010040005600000003500700000004002800000008700030050000100600040000 ED=7.2/7.2/3.8
000010002003000010040005600000003500700000008008900000006700030050000100200040000 ED=7.3/7.2/3.8
000010002003000010040005600000003700200000004005600000006200030070000800900040000 ED=7.2/7.2/3.8
000010002003000010040005600000006700800000005009400000007300080050000400200090000 ED=8.5/8.5/3.8
000010002003000040010005600000002700500000008004600000006300010090000500200040000 ED=7.2/7.2/3.8
000010002003000040010005600000003500200000007004600000006800030050000900700040000 ED=8.3/7.4/3.8
000010002003000040010005600000003500700000006004800000008700030050000900200040000 ED=8.3/8.3/3.8
000010002003000040010005600000003500700000008004600000006100030050000900200040000 ED=7.3/7.2/3.8
000010002003000040010005600000003700400000005008600000006400030050000900200080000 ED=8.3/8.3/3.8
000010002003000040010005600000007500400000003008200000002400080050000300900060000 ED=7.1/7.1/3.8
000010002003000040010005600000007500400000008009200000002400090050000300600080000 ED=7.1/7.1/3.8
000010002003000040010005600000007800500000006004600000006300010080000500200040000 ED=7.2/7.2/3.8
000010002003000040010005600000007800500000007004600000006300010090000500200040000 ED=7.3/7.2/3.8
000010002003000040010005600000007800500000009004600000006300070080000500200040000 ED=7.3/7.2/3.8
000010002003000040010005600000007800900000005004600000006300070050000900200040000 ED=8.4/7.2/3.8
000010002003000040020005600000003500100000007004200000006800030050000100700040000 ED=7.2/7.2/3.8
000010002003000040020005600000003500100000007004200000008600030050000100700040000 ED=7.2/7.2/3.8
000010002003000040020005600000003500100000007004200000008600090050000100700040000 ED=7.2/7.2/3.8
000010002003000040020005600000003500100000007004200000008900030050000100700040000 ED=7.2/7.2/3.8
000010002003000040020005600000003500100000007004800000008600090050000100700040000 ED=7.2/7.2/3.8
000010002003000040020005600000006300100000005007800000006400010050000800700020000 ED=7.2/7.2/3.8
000010002003000040020005600000006400100000005004700000006300010050000700800020000 ED=7.2/7.2/3.8
000010002003000040020005600000006400100000005007400000006700010050000800900020000 ED=7.2/7.2/3.8
000010002003000040020005600000006500100000007004800000008900030050000100700040000 ED=7.2/7.2/3.8
000010002003000040020005600000006700100000005004800000006300070050000800900020000 ED=9.2/8.3/3.8
000010002003000040020005600000006700100000005004800000008300090070000100500040000 ED=7.2/7.2/3.8
000010002003000040020005600000007100400000008002600000006400090050000300100080000 ED=7.2/7.2/3.8
000010002003000040020005600000007100400000008009600000006400090050000300100020000 ED=8.9/7.2/3.8
000010002003000040020005600000007100400000008009600000006400090070000300100080000 ED=7.2/7.2/3.8
000010002003000040020005600000007200100000008004600000006300070050000100800040000 ED=7.2/7.2/3.8
000010002003000040020005600000007400100000005004600000007400010050000300800020000 ED=7.2/7.2/3.8
000010002003000040020005600000007400100000005004800000008400010050000300900020000 ED=7.2/7.2/3.8
000010002003000040020005600000007400100000005007800000006700010050000300900020000 ED=7.2/7.2/3.8
000010002003000040020005600000007400100000005007800000006700010050000800900020000 ED=7.2/7.2/3.8
000010002003000040020005600000007500100000008004300000006900070050000300800040000 ED=7.3/7.3/3.8
000010002003000040020005600000007500100000008004600000006200070050000100800040000 ED=7.2/7.2/3.8
000010002003000040020005600000007500100000008004900000009600030050000100800040000 ED=7.2/7.2/3.8
000010002003000040020005600000007800100000005004600000006900030080000900500040000 ED=7.2/7.2/3.8
000010002003000040020005600000007800100000005004600000007900010050000300800020000 ED=7.2/7.2/3.8
000010002003000040020005600000007800100000005004900000007600010050000300600020000 ED=7.2/7.2/3.8
000010002003000040020005600000007800100000005004900000009400010050000300800060000 ED=8.8/7.2/3.8
000010002003000040020005600000007800100000005006900000007600010050000300400020000 ED=7.2/7.2/3.8
000010002003000040020005600000007800100000009004600000006300070050000100900040000 ED=7.2/7.2/3.8
000010002003000040040005600000006100200000003007800000004700050010000800900030000 ED=7.8/7.2/3.8
000010002003000040040005600000006100200000003007800000006700050010000900800030000 ED=7.3/7.2/3.8
000010002003000040040005600000006100200000003007800000006900080010000500700030000 ED=7.2/7.2/3.8
000010002003000040040005600000006700100000005002800000006700010050000300700020000 ED=7.2/7.2/3.8
000010002003000040040005600000006700100000005004800000008900010050000300900020000 ED=7.2/7.2/3.8
000010002003000040040005600000006700100000005008700000006800010050000300800020000 ED=7.2/7.2/3.8
000010002003000040040005600000006700100000005008700000006900010050000300700020000 ED=7.2/7.2/3.8
000010002003000040040005600000006700100000005008900000009800010050000300600020000 ED=7.3/7.2/3.8
000010002003000040040005600000007100800000003004900000006300070010000500200040000 ED=7.1/7.1/3.8
000010002003000040040005600000007100800000003004900000006300070010000500200060000 ED=8.4/7.2/3.8
000010002003000040040005600000007400100000005007800000006900010050000300900020000 ED=7.2/7.2/3.8
000010002003000040040005600000007500100000008002600000006300070050000100900020000 ED=7.2/7.2/3.8
000010002003000040040005600000007800100000005004600000007900010050000300900020000 ED=7.2/7.2/3.8
000010002003000040040005600000007800100000005006300000007600080050000300900020000 ED=8.5/8.5/3.8
000010002003000040050002600000003100400000005007600000006400030080000900100050000 ED=7.2/7.2/3.8
000010002003000040050002600000003500100000007004600000006800030090000100700040000 ED=7.2/7.2/3.8
000010002003000040050002600000003700400000005006800000008400030060000900100050000 ED=7.2/7.2/3.8
000010002003000040050002600000003700400000005006800000008400030070000900100050000 ED=7.2/7.2/3.8
000010002003000040050002600000003700400000005008600000006400030070000900100020000 ED=8.5/8.4/3.8
000010002003000040050002600000003700400000005008600000006400030090000800100050000 ED=7.2/7.2/3.8
000010002003000040050002600000003700400000008005600000006400030070000900100080000 ED=9.1/9.1/3.8
000010002003000040050002600000005100400000007005600000006400080090000300100070000 ED=7.2/7.2/3.8
000010002003000040050002600000005200100000007004600000006300080090000100700040000 ED=7.2/7.2/3.8
000010002003000040050002600000006100400000005007800000008400070090000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000006100700000003004500000006700080090000500100030000 ED=7.2/7.2/3.8
000010002003000040050002600000006100700000003008500000006400080010000500900070000 ED=8.5/8.5/3.8
000010002003000040050002600000006100700000003008500000006400080090000500100030000 ED=7.2/7.2/3.8
000010002003000040050002600000006700400000005008900000002400080070000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000006700400000005008900000006400080070000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000006700400000005008900000009400080070000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007100400000005002600000006400080090000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007100400000005002800000006400070080000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007100400000005008600000006400080090000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007100400000005008900000009400070060000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007100400000008002600000006400070090000300100080000 ED=7.2/7.2/3.8
000010002003000040050002600000007100400000008005600000006400070090000300100080000 ED=7.2/7.2/3.8
000010002003000040050002600000007200100000008004500000006400010070000500800090000 ED=7.3/7.2/3.8
000010002003000040050002600000007200100000008004900000006300050090000100800040000 ED=7.2/7.2/3.8
000010002003000040050002600000007500100000008004600000006300070090000100800040000 ED=7.2/7.2/3.8
000010002003000040050002600000007500400000007008600000006400080090000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007500400000008009600000006400090080000300100050000 ED=7.3/7.2/3.8
000010002003000040050002600000007800100000009004600000006500070080000100900040000 ED=7.2/7.2/3.8
000010002003000040050002600000007800100000009004600000006700050080000100900040000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005002600000006400070080000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005002600000006400070090000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005002600000006400090070000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005002600000006400090080000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005002600000008400070060000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005002600000009400070060000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005002900000009400060080000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005009200000006400090080000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005009600000006400090080000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005009600000007400090060000300100050000 ED=7.2/7.2/3.8
000010002003000040050002600000007800400000005009600000007400090080000300100050000 ED=7.2/7.2/3.8
000010002003000040050003100000005600700000001004800000008600050090000700200040000 ED=8.4/7.3/3.8
000010002003000040050003600000004100200000007006800000004200050010000800900070000 ED=7.2/7.2/3.8
000010002003000040050003600000006100200000007004800000006200050010000800900070000 ED=7.2/7.2/3.8
000010002003000040050003600000006100200000007008300000006200050010000900400070000 ED=7.2/7.2/3.8
000010002003000040050003600000007100200000008004600000006200050010000900700080000 ED=7.2/7.2/3.8
000010002003000040050003600000007100800000003004500000008400070010000500200090000 ED=7.3/7.3/3.8
000010002003000040050003600000007800100000009004300000006800050020000100900040000 ED=7.2/3.8/3.8
000010002003000040050003600000007800400000005002600000006400070080000900100050000 ED=7.2/7.2/3.8
000010002003000040050003600000007800400000005002900000006400070080000900100050000 ED=8.3/7.2/3.8
000010002003000040050004300000006100200000007004800000006200050010000800900070000 ED=7.2/7.2/3.8
000010002003000040050004600000003100200000007004800000006200050010000800900070000 ED=7.2/7.2/3.8
000010002003000040050004600000003400200000007008600000006200030040000500900080000 ED=8.4/8.4/3.8
000010002003000040050004600000005300700000001008200000006800050010000900200030000 ED=7.2/7.2/3.8
000010002003000040050004600000006100200000003004700000007200050010000800900030000 ED=7.2/7.2/3.8
000010002003000040050004600000006100200000003007500000006700080010000500900030000 ED=7.2/7.2/3.8
000010002003000040050004600000006100200000003007800000006700050010000800900030000 ED=7.3/7.2/3.8
000010002003000040050004600000006100200000007004500000006200080010000500900070000 ED=7.2/7.2/3.8
000010002003000040050004600000006100200000007008500000006200030010000500900070000 ED=7.2/7.2/3.8
000010002003000040050004600000006100700000003004500000006400080020000900100030000 ED=8.4/7.2/3.8
000010002003000040050004600000006100700000003004500000006400080090000500100030000 ED=7.2/7.2/3.8
000010002003000040050004600000006100700000003004500000006800090020000500100030000 ED=7.2/7.2/3.8
000010002003000040050004600000006100700000003004500000008400090020000500100030000 ED=7.2/7.2/3.8
000010002003000040050004600000007100200000003004600000006400050010000700800030000 ED=7.3/7.2/3.8
000010002003000040050004600000007100200000003006500000007600080010000500900030000 ED=7.2/7.2/3.8
000010002003000040050004600000007100200000003006800000004600050010000800900030000 ED=8.4/7.2/3.8
000010002003000040050004600000007100200000003008500000004800060010000500900030000 ED=7.2/7.2/3.8
000010002003000040050004600000007100200000003008500000004800070010000500900030000 ED=7.2/7.2/3.8
000010002003000040050004600000007100200000003008500000006800070010000500900030000 ED=7.2/7.2/3.8
000010002003000040050004600000007100200000003008500000007800060010000500900030000 ED=7.2/7.2/3.8
000010002003000040050004600000007100200000006008500000006800070010000500900030000 ED=7.2/7.2/3.8
000010002003000040050006100000001700800000006004900000009300050070000800600040000 ED=8.5/8.4/3.8
000010002003000040050006100000001700800000006009500000001900080060000500700030000 ED=7.2/7.2/3.8
000010002003000040050006100000002500400000007008700000007400080060000300900050000 ED=7.8/7.2/3.8
000010002003000040050006100000002600400000005007800000001400070060000300800050000 ED=7.2/7.2/3.8
000010002003000040050006100000002700800000006004500000001400080060000500900070000 ED=7.3/3.8/3.8
000010002003000040050006100000003500400000007007800000008400030060000900200050000 ED=7.2/7.2/3.8
000010002003000040050006100000003500400000007008100000001400030060000900200050000 ED=7.2/7.2/3.8
000010002003000040050006100000003500700000001004800000008900030060000700200040000 ED=7.2/7.2/3.8
000010002003000040050006100000003500700000006004800000001400070060000900200080000 ED=8.9/8.9/3.8
000010002003000040050006100000003600400000001007800000008400070090000300200050000 ED=7.1/7.1/3.8
000010002003000040050006100000003600400000005007100000001400030060000800200070000 ED=7.3/7.1/3.8
000010002003000040050006100000003600400000005007800000001400030060000800900050000 ED=7.2/7.2/3.8
000010002003000040050006100000003600400000005007800000001400030060000900800050000 ED=7.2/7.2/3.8
000010002003000040050006100000003600400000005007800000001400030060000900800070000 ED=7.3/3.8/3.8
000010002003000040050006100000003600400000005007800000001700080060000900200040000 ED=8.4/8.4/3.8
000010002003000040050006100000003600400000005007800000008700010060000900200040000 ED=8.4/8.4/3.8
000010002003000040050006100000003600400000007001800000008400030060000900200050000 ED=8.3/8.3/3.8
000010002003000040050006100000003600400000007007800000009400030060000800200050000 ED=7.2/7.2/3.8
000010002003000040050006100000003600400000007008500000001900050060000800200040000 ED=7.3/7.2/3.8
000010002003000040050006100000003600700000001008200000004700030060000900200050000 ED=7.3/7.3/3.8
000010002003000040050006100000003600700000008002100000001400030060000700900020000 ED=7.2/7.1/3.8
000010002003000040050006100000003600700000008002500000001900030060000700400020000 ED=7.2/7.2/3.8
000010002003000040050006100000003700400000001006800000005400090070000300200050000 ED=8.4/7.3/3.8
000010002003000040050006100000003700400000005008900000001400030070000900200080000 ED=8.9/8.9/3.8
000010002003000040050006100000003700400000006001800000008400030060000900200050000 ED=8.3/8.3/3.8
000010002003000040050006100000003700400000008009800000008400030070000600200050000 ED=9.0/7.3/3.8
000010002003000040050006100000003700800000006004500000001400080060000500200070000 ED=7.2/7.2/3.8
000010002003000040050006100000003700800000006004500000001400080060000500900020000 ED=7.2/3.8/3.8
000010002003000040050006100000003700800000006004500000009100030070000800200040000 ED=8.5/8.5/3.8
000010002003000040050006100000005700800000006004900000001400050060000900200080000 ED=8.3/7.2/3.8
000010002003000040050006100000007300800000006004500000001400080060000500200090000 ED=7.3/7.2/3.8
000010002003000040050006100000007500400000008009100000001400090060000300200050000 ED=7.2/7.2/3.8
000010002003000040050006100000007600200000005007100000001200030060000800400050000 ED=7.2/7.2/3.8
000010002003000040050006100000007600400000005008300000001500080060000300200040000 ED=7.3/7.2/3.8
000010002003000040050006100000007600400000008009800000008400090060000300700050000 ED=7.3/3.8/3.8
000010002003000040050006100000007600800000005004300000001800090060000300200040000 ED=7.2/7.2/3.8
000010002003000040050006100000007800200000005006900000009200070080000600400050000 ED=7.2/7.2/3.8
000010002003000040050006100000007800600000007004100000001300050080000600200040000 ED=7.3/7.2/3.8
000010002003000040050006100000007800600000007004900000001300050080000600200040000 ED=7.3/7.2/3.8
000010002003000040050006100000007800600000009004100000001300050080000600200040000 ED=7.2/7.2/3.8
000010002003000040050006100000007800700000003004500000002400090080000500600030000 ED=9.0/7.2/3.8
000010002003000040050006100000007800900000006004100000001300050060000900200040000 ED=3.8/3.8/3.8
000010002003000040050006300000002700100000006004500000008400010060000500700090000 ED=7.2/7.2/3.8
000010002003000040050006300000002700100000006004500000008400010060000500900070000 ED=7.2/7.2/3.8
000010002003000040050006300000002700100000008004900000009200050060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006300000002700100000008004900000009700050060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006300000005600700000001004800000009400050010000800200030000 ED=7.3/7.3/3.8
000010002003000040050006300000005700700000001004800000008700050060000900200040000 ED=8.5/8.5/3.8
000010002003000040050006300000007100800000006004500000007400080010000500200030000 ED=7.3/7.2/3.8
000010002003000040050006300000007100800000006004500000007400080060000500200030000 ED=7.3/7.2/3.8
000010002003000040050006300000007100800000007004500000007400090020000500100030000 ED=7.3/7.2/3.8
000010002003000040050006300000007500100000006004800000007400010060000900800050000 ED=7.1/7.1/3.8
000010002003000040050006300000007600100000008002900000009700030060000100400020000 ED=7.2/7.2/3.8
000010002003000040050006300000007600100000008004200000002900050060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006300000007600100000008004900000009500030060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006300000007600100000008004900000009700050020000100800040000 ED=7.2/7.2/3.8
000010002003000040050006300000007600400000005002800000008400070060000900100050000 ED=7.2/7.2/3.8
000010002003000040050006300000007600400000005002800000009400070060000800100050000 ED=7.2/7.2/3.8
000010002003000040050006300000007600400000005008200000009400070060000900100050000 ED=7.2/7.2/3.8
000010002003000040050006300000007600400000005008900000002400070060000900100050000 ED=7.2/7.2/3.8
000010002003000040050006300000007600400000005008900000009800070060000100200040000 ED=8.9/8.9/3.8
000010002003000040050006300000007800100000006004500000007800010060000500900020000 ED=7.2/7.2/3.8
000010002003000040050006300000007800400000005006900000009400070080000600100050000 ED=7.2/7.2/3.8
000010002003000040050006700000001300100000006004500000007800010060000500900020000 ED=8.3/7.2/3.8
000010002003000040050006700000001500400000006008700000007400080090000300200050000 ED=7.2/7.2/3.8
000010002003000040050006700000001500800000009004300000007800010060000300200050000 ED=7.2/7.2/3.8
000010002003000040050006700000001600800000001009300000007800090060000300200050000 ED=7.3/7.3/3.8
000010002003000040050006700000001800200000006004500000007300010060000500900020000 ED=7.2/7.2/3.8
000010002003000040050006700000002100200000003004500000006400080010000500900030000 ED=7.2/7.2/3.8
000010002003000040050006700000002100200000003006800000007900050010000600400030000 ED=7.2/7.2/3.8
000010002003000040050006700000002100400000005006800000007400090080000300100050000 ED=7.2/7.2/3.8
000010002003000040050006700000002100700000003004800000002400050010000600800070000 ED=8.3/3.8/3.8
000010002003000040050006700000002100700000003004800000002400090010000600800030000 ED=7.3/7.2/3.8
000010002003000040050006700000002100700000003004800000009400050010000600800030000 ED=7.2/7.2/3.8
000010002003000040050006700000002100700000003008400000002800050010000600400030000 ED=7.2/7.2/3.8
000010002003000040050006700000002100800000003004500000007400080010000500900030000 ED=7.2/7.2/3.8
000010002003000040050006700000002100800000006004900000002400050010000800700030000 ED=9.0/3.8/3.8
000010002003000040050006700000002300100000008004700000002300050060000100800040000 ED=7.3/7.2/3.8
000010002003000040050006700000002300100000008004700000007300050020000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000002300100000008004900000007300050060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000002500400000008009700000007400090060000100200050000 ED=7.2/7.2/3.8
000010002003000040050006700000002500800000001004700000007400080010000900200030000 ED=7.1/7.1/3.8
000010002003000040050006700000002600100000003004600000007300050080000100900040000 ED=7.1/7.1/3.8
000010002003000040050006700000002600100000003004700000007300050060000100800040000 ED=7.1/7.1/3.8
000010002003000040050006700000002600100000003004800000008300050060000100900040000 ED=7.1/7.1/3.8
000010002003000040050006700000002600100000003004800000008300050070000100900040000 ED=7.1/7.1/3.8
000010002003000040050006700000002600100000008004300000007600050090000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000002600100000008004300000007800050060000100900040000 ED=8.4/7.2/3.8
000010002003000040050006700000002600100000008004900000007300050060000900800040000 ED=9.0/9.0/3.8
000010002003000040050006700000002600400000001008900000009400080060000300200070000 ED=8.9/8.9/3.8
000010002003000040050006700000002600400000005001800000008400010060000300700090000 ED=8.9/3.8/3.8
000010002003000040050006700000002600400000005008300000007500090010000300200040000 ED=7.2/7.2/3.8
000010002003000040050006700000002600400000005008300000007500090060000300200040000 ED=7.2/7.2/3.8
000010002003000040050006700000002600400000005008900000007400030060000900100080000 ED=9.1/3.8/3.8
000010002003000040050006700000002600400000008009500000007400050060000100800090000 ED=7.2/7.2/3.8
000010002003000040050006700000002800100000009004300000007200050080000100900040000 ED=7.2/7.2/3.8
000010002003000040050006700000003100200000005008700000007200030060000900400050000 ED=7.2/7.2/3.8
000010002003000040050006700000003100200000008004500000007400060010000300900080000 ED=7.2/7.2/3.8
000010002003000040050006700000003100200000008004700000007600030010000500900040000 ED=7.2/7.2/3.8
000010002003000040050006700000003100400000005002700000007400080060000900100050000 ED=7.2/7.2/3.8
000010002003000040050006700000003100400000005002800000008400030060000900700020000 ED=8.3/7.2/3.8
000010002003000040050006700000003100400000005008700000007400030060000800100050000 ED=7.2/7.2/3.8
000010002003000040050006700000003100400000005008900000009400030060000800100050000 ED=7.2/7.2/3.8
000010002003000040050006700000003100400000008008700000007400090010000600200050000 ED=7.2/7.2/3.8
000010002003000040050006700000003100400000008008900000007400030060000900200050000 ED=8.5/8.5/3.8
000010002003000040050006700000003100600000008004700000007900030010000500200040000 ED=8.9/8.5/3.8
000010002003000040050006700000003100800000006004500000001400080060000500900020000 ED=7.2/3.8/3.8
000010002003000040050006700000003100800000009004500000007600030010000800200040000 ED=7.2/7.2/3.8
000010002003000040050006700000003100800000009004700000007500030010000800900040000 ED=7.2/7.2/3.8
000010002003000040050006700000003100800000009004700000007600030010000800200040000 ED=7.3/7.2/3.8
000010002003000040050006700000003500100000006002700000007500080090000100600040000 ED=7.1/7.1/3.8
000010002003000040050006700000003500100000008004700000007900030060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003500100000008004900000002700030060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003500400000008001700000007400030060000900200050000 ED=7.2/7.2/3.8
000010002003000040050006700000003500800000001004700000007900030060000800100040000 ED=7.3/7.3/3.8
000010002003000040050006700000003500800000001004900000007400080010000300200060000 ED=7.2/7.2/3.8
000010002003000040050006700000003500800000006004700000007400010060000900200080000 ED=9.0/9.0/3.8
000010002003000040050006700000003500800000006004900000007400010060000900200080000 ED=8.9/8.9/3.8
000010002003000040050006700000003500800000009004200000007100030060000800900040000 ED=7.3/7.3/3.8
000010002003000040050006700000003500800000009004700000007800030060000100900040000 ED=7.3/7.3/3.8
000010002003000040050006700000003600100000008002700000007500030090000100400020000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008002700000007800090060000100400020000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008002700000007900030060000100400020000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004200000002700030060000100800040000 ED=7.1/7.1/3.8
000010002003000040050006700000003600100000008004200000002700090060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004200000002900030060000100700050000 ED=8.5/7.2/3.8
000010002003000040050006700000003600100000008004200000007500030060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004500000002700090060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004500000007600030090000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004500000007800030060000100900040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004700000006200050090000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004700000007500030090000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004700000007600050090000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004900000002700030060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004900000007500030090000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600100000008004900000009200030060000100700040000 ED=7.3/7.2/3.8
000010002003000040050006700000003600100000008004900000009200030070000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600200000001004700000007200030060000800900050000 ED=8.4/7.2/3.8
000010002003000040050006700000003600200000001008700000001200030060000900400050000 ED=8.5/8.5/3.8
000010002003000040050006700000003600200000008004800000008200030060000100900040000 ED=7.3/7.2/3.8
000010002003000040050006700000003600400000001008900000009400080070000300200050000 ED=7.2/7.1/3.8
000010002003000040050006700000003600400000005001800000007900030060000100200040000 ED=7.3/7.3/3.8
000010002003000040050006700000003600400000005007100000001400030060000800200070000 ED=7.3/7.3/3.8
000010002003000040050006700000003600400000005007800000008900030060000100200040000 ED=7.3/7.3/3.8
000010002003000040050006700000003600400000005008700000007400090060000800100050000 ED=7.2/7.2/3.8
000010002003000040050006700000003600400000005008700000007800090060000100200040000 ED=8.9/8.9/3.8
000010002003000040050006700000003600400000008001500000007900050060000100200040000 ED=7.2/7.2/3.8
000010002003000040050006700000003600400000008001500000009800050060000100200040000 ED=7.3/7.2/3.8
000010002003000040050006700000003600400000008001800000008400030060000900700050000 ED=7.2/3.8/3.8
000010002003000040050006700000003600400000008008700000007400030060000900200050000 ED=8.9/7.4/3.8
000010002003000040050006700000003600400000008009500000007800090060000100200040000 ED=9.0/9.0/3.8
000010002003000040050006700000003600400000008009800000007400030060000100200090000 ED=8.3/8.3/3.8
000010002003000040050006700000003600800000001004900000009800050070000300200040000 ED=9.0/9.0/3.8
000010002003000040050006700000003800100000006004700000007800050090000100600040000 ED=7.2/7.2/3.8
000010002003000040050006700000003800100000009002700000007600030080000100400020000 ED=7.2/7.2/3.8
000010002003000040050006700000003800100000009002700000007800030060000100400020000 ED=7.2/7.2/3.8
000010002003000040050006700000003800100000009004700000006200050070000100900040000 ED=7.2/7.2/3.8
000010002003000040050006700000003800100000009004700000007200050060000100900040000 ED=7.2/7.2/3.8
000010002003000040050006700000003800200000005009700000007200090080000600400050000 ED=7.2/7.2/3.8
000010002003000040050006700000003800400000001006900000007400090080000300100050000 ED=7.2/7.2/3.8
000010002003000040050006700000003800400000001009200000007400060080000300100050000 ED=8.3/7.2/3.8
000010002003000040050006700000003800400000005001700000007400010080000600900050000 ED=7.2/7.1/3.8
000010002003000040050006700000003800400000005006700000007400090080000600100050000 ED=7.2/7.2/3.8
000010002003000040050006700000003800400000005009700000007400090020000600100050000 ED=7.2/7.2/3.8
000010002003000040050006700000003800400000006001500000007900050060000100200040000 ED=7.3/7.2/3.8
000010002003000040050006700000003800400000006008700000007400010060000500200090000 ED=9.0/9.0/3.8
000010002003000040050006700000003800600000001009500000001400050080000600200090000 ED=7.2/7.2/3.8
000010002003000040050006700000004100200000005008700000007200030060000900400050000 ED=7.2/7.2/3.8
000010002003000040050006700000005300100000008004700000007300090060000100800040000 ED=7.2/7.2/3.8
000010002003000040050006700000005300800000001004900000007400080010000600200030000 ED=9.0/9.0/3.8
000010002003000040050006700000005800100000006002700000007400010060000300800020000 ED=7.2/7.2/3.8
000010002003000040050006700000005800100000006002900000009400010060000300700020000 ED=7.2/7.2/3.8
000010002003000040050006700000005800100000006004700000007800010060000300900020000 ED=7.2/7.2/3.8
000010002003000040050006700000005800100000006004700000008400010060000300900020000 ED=7.2/7.2/3.8
000010002003000040050006700000005800100000006008700000007400010060000300900020000 ED=7.2/7.2/3.8
000010002003000040050006700000005800900000001004800000007400090010000600200030000 ED=9.0/9.0/3.8
000010002003000040050006700000007100200000003004600000007300050010000800900020000 ED=7.2/7.2/3.8
000010002003000040050006700000007100200000003004800000006400050010000900700030000 ED=7.2/7.2/3.8
000010002003000040050006700000007100200000003004800000007200050010000600900030000 ED=7.2/7.2/3.8
000010002003000040050006700000007100200000003004800000007200090010000500600030000 ED=7.2/7.2/3.8
000010002003000040050006700000007100200000003004800000008200050010000600700030000 ED=7.1/7.1/3.8
000010002003000040050006700000007100200000003004800000009200050010000600700030000 ED=7.1/7.1/3.8
000010002003000040050006700000007100200000003008600000007800090010000500400030000 ED=7.2/7.2/3.8
000010002003000040050006700000007100200000003008600000007900050010000800400030000 ED=7.2/7.2/3.8
000010002003000040050006700000007100200000003008900000007200050010000800600030000 ED=7.2/7.2/3.8
000010002003000040050006700000007100200000003008900000009400050010000600700030000 ED=7.3/7.1/3.8
000010002003000040050006700000007100400000005008900000007400080060000300100050000 ED=7.2/7.2/3.8
000010002003000040050006700000007100600000003004200000007800050010000600900030000 ED=7.1/7.1/3.8
000010002003000040050006700000007100600000003004800000002400050010000600700090000 ED=7.1/3.8/3.8
000010002003000040050006700000007100600000003008200000004800050010000600900030000 ED=7.1/7.1/3.8
000010002003000040050006700000007100600000003008900000002800050010000600700030000 ED=7.1/7.1/3.8
000010002003000040050006700000007100800000003004900000002400050010000800600070000 ED=8.9/3.8/3.8
000010002003000040050006700000007100800000003004900000002400050010000800700030000 ED=8.4/7.2/3.8
000010002003000040050006700000007500400000008009800000001400090060000300200050000 ED=7.2/7.2/3.8
000010002003000040050006700000007500800000001004600000007400080010000900200030000 ED=9.0/9.0/3.8
000010002003000040050006700000007800100000009004200000007800050060000100900040000 ED=7.2/7.2/3.8
000010002003000040050006700000008100200000003004700000006400050010000900800030000 ED=7.2/7.2/3.8
000010002003000040050006700000008100900000003004700000008300050010000600200090000 ED=7.2/7.2/3.8
000010002003000040050006700000008100900000003006700000008300050010000600200090000 ED=7.2/7.2/3.8
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: A tough pattern ?

Postby denis_berthier » Mon Mar 01, 2021 3:18 pm

I've tried only the hardest of each of the two collections:
Ocean's #110, SER 9.2, is in W12
Ruud's #10, SER 8.5, is in W6
denis_berthier
2010 Supporter
 
Posts: 4275
Joined: 19 June 2007
Location: Paris

PreviousNext

Return to General