.
There is an elementary solution, using only very classical Subsets and bivalue-chains.
- Code: Select all
+-------------------+-------------------+-------------------+
! 2 589 4 ! 89 3 7 ! 1 59 6 !
! 18 7 359 ! 189 6 129 ! 2345 23459 2345 !
! 6 19 39 ! 4 12 5 ! 23 7 8 !
+-------------------+-------------------+-------------------+
! 14 1249 29 ! 5 7 13 ! 6 8 234 !
! 5 3 6 ! 2 4 8 ! 9 1 7 !
! 7 124 8 ! 6 9 13 ! 2345 2345 2345 !
+-------------------+-------------------+-------------------+
! 9 6 25 ! 7 125 4 ! 8 235 1235 !
! 3 245 7 ! 19 8 129 ! 245 6 1245 !
! 48 2458 1 ! 3 25 6 ! 7 245 9 !
+-------------------+-------------------+-------------------+
107 candidates, 461 csp-links and 461 links. Density = 8.13%
whip[1]: r3n9{c3 .} ==> r2c3 ≠ 9, r1c2 ≠ 9
whip[1]: b5n1{r6c6 .} ==> r8c6 ≠ 1, r2c6 ≠ 1
hidden-pairs-in-a-row: r2{n1 n8}{c1 c4} ==> r2c4 ≠ 9
finned-x-wing-in-rows: n5{r1 r8}{c2 c8} ==> r9c8 ≠ 5, r7c8 ≠ 5
biv-chain[2]: r3n2{c7 c5} - c6n2{r2 r8} ==> r8c7 ≠ 2
biv-chain[3]: r2c3{n3 n5} - r7c3{n5 n2} - r7c8{n2 n3} ==> r2c8 ≠ 3
biv-chain[3]: r4c1{n4 n1} - b1n1{r2c1 r3c2} - c2n9{r3 r4} ==> r4c2 ≠ 4
biv-chain[3]: r7c3{n2 n5} - b1n5{r2c3 r1c2} - c2n8{r1 r9} ==> r9c2 ≠ 2
finned-x-wing-in-rows: n2{r9 r3}{c5 c8} ==> r2c8 ≠ 2
biv-chain[3]: r9n2{c8 c5} - r3c5{n2 n1} - r7n1{c5 c9} ==> r7c9 ≠ 2
biv-chain[3]: r9n2{c8 c5} - c5n5{r9 r7} - r7c3{n5 n2} ==> r7c8 ≠ 2
naked-single ==> r7c8 = 3
biv-chain[4]: r1c8{n5 n9} - c4n9{r1 r8} - b8n1{r8c4 r7c5} - r7c9{n1 n5} ==> r2c9 ≠ 5
biv-chain[4]: r2c3{n5 n3} - r3n3{c3 c7} - r3n2{c7 c5} - r7n2{c5 c3} ==> r7c3 ≠ 5
stte