An off-topic comment on this puzzle (since it is the result of tool use...)
The puzzle has one solution (at least one) with four chains using only conjugates (bivalues and bilocations), no group, no ALS.
- Code: Select all
+-------------------------+----------------------+--------------------------+
| 4 138 F1689 | a68 7 2 | 5 389 A1-89 |
| 5789 578 2 | 458 3 1 | 6 489 489 |
| 13568 1358 168 | 4568 468 9 | B1238 2348 7 |
+-------------------------+----------------------+--------------------------+
| 2368 238 i678 | 1 5 h78 | 4 26789 689 |
| 258 k248-5 Dj478 | 3 9 6 | C278 1 e58 |
| 156 9 16 | 248 248 g478 | f78 d56 3 |
+-------------------------+----------------------+--------------------------+
| 789 478 3 | b4689 1 5 | 789 c4678 2 |
| 12789 6 5 | 2489 248 48 | 13789 3478 148 |
| 1289 1248 E1489 | 7 2468 3 | 189 4568 14568 |
+-------------------------+----------------------+--------------------------+
1. (8=6)r1c4 - r7c4 = r7c8 - (6=5)r6c8 - (5=8)r5c9 => -8 r1c9 (tags: a to e)
2. (5=8)r5c9 - (8=7)r6c7 - r6c6 = r4c6 - r4c3 = (7-4)r5c3 = (4)r5c2 => -5 r5c2 (sequencing tags: e to k)
3. (1)r1c9 = (1-2)r3c7 = (2-7)r5c7 = (7-4)r5c3 = (4-9)r9c3 = (9)r1c3 => -9 r1c9 (tags: A to F); basics, 3 placements
- Code: Select all
+-----------------------+---------------------+-----------------------+
| 4 38 689 | 68 7 2 | 5 389 1 |
| a78-9 b578 2 | 458 3 1 | 6 489 489 |
| 1368 c1358 168 | 4568 468 9 | h238 2348 7 |
+-----------------------+---------------------+-----------------------+
| 2368 238 678 | 1 5 78 | 4 26789 689 |
| 258 248 j478 | 3 9 6 | i278 1 58 |
| 156 9 16 | 2 48 478 | 78 56 3 |
+-----------------------+---------------------+-----------------------+
| l789 478 3 | 468 1 5 | 789 4678 2 |
| 17 6 5 | 9 2 48 | g137 37 48 |
| 1289 d1248 k1489 | 7 468 3 | f189 4568 4568 |
+-----------------------+---------------------+-----------------------+
4. (7)r2c1 = (7-5)r2c2 = (5-1)r3c2 = r9c2 - r9c7 = (1-3)r8c7 = (3-2)r3c7 = (2-7)r5c7 = (7-4)r5c3 = (4-9)r9c3 = (9)r1c3 => -9 r2c1; ste
I see no technique in there, justifying a rating above the SER 7.2
Of course, I'd write such a solution in a more condensed way (using ALSs and AHSs) :
1. (8=6)r1c4 - r7c4 = r7c8 - (6=58)b6p68 => -8 r1c9
2. (5=87)b6p67 - r6c6 = r4c6 - r4c3 = (74)r5c23 => -5 r5c2
3. (1)r1c9 = (12-7)r35c7 = (74-9)r59c3 = (9)r1c3 => -9 r1c9; basics & 3 placements
4. (7)r2c1 = (751)r239c2 - (1=897)r679c7 - r5c7 = (749)r159c3 => -9 r2c1; ste